Homework 5

due on Monday, November 1

Problem 1. Let $T: V \longrightarrow W$ be a linear transformation. Choose a basis $u_1, ..., u_k$ of ker T.

a) Complete $u_1, ..., u_k$ to a basis $u_1, ..., u_k, u_{k+1}, ..., u_{k+m}$ of V. Prove that $T(u_{k+1}), ..., T(u_{k+m})$ is a basis of the image $\operatorname{Im} T$ of T. Conclude that $\dim V = \dim \ker T + \dim \operatorname{Im} T$.

b) Let $w_1,...,w_m$ be a basis of ImT and choose u_{k+i} such that $T(u_{k+i})=w_i$, i=1,...,m. Prove that $u_1,...,u_k,u_{k+1},...,u_{k+m}$ is a basis of V.

Problem 2. Let A be a matrix of size 5×3 and let B be a matrix of size 3×5 . Prove that the 5×5 matrix AB is not invertible. (Hint: Think in terms of linear transformations).

Problem 3. A linear transformation $S: \mathbb{R}^5 \longrightarrow \mathbb{R}^4$ is given by the matrix $A = \begin{pmatrix} 2 & 6 & 1 & 4 & 4 \\ 1 & 3 & 1 & 3 & 3 \\ 1 & 3 & 2 & 5 & 5 \\ 1 & 3 & 3 & 7 & 7 \end{pmatrix}$.

Find bases of the kernel and of the image of S.

Problem 4. a) Find the matrix of the linear transformation

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, \quad T(x, y, z) = (x + y + z, x - y + z)$$

in the basis (1, -2, 1), (1, 2, 1), (0, 2, 1) of \mathbb{R}^3 and the basis (1, 1), (1, -1) of \mathbb{R}^2 .

b) What is the change of basis matrix from the basis $\mathbf{b} = \{(1,1,1), (1,0,1), (0,0,1)\}$ to the basis $\mathbf{d} = \{(2,1,1), (2,2,1), (3,2,2)\}$ of \mathbb{R}^3 ?. Find the coordinates of a vector in the basis \mathbf{d} if its coordinates in the basis \mathbf{b} are (0,1,2).

Problem 5. Find a linear transformation $T : \mathbb{R}^6 \longrightarrow \mathbb{R}^4$ such that ker T has basis (1, 0, 2, 0, -2, 3), (0, 1, -1, 0, 1, 1), (0, 0, 0, 1, -2, 2).

Problem 6. a) A liner transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ satisfies T(1,0,1) = (1,1,0) and T(1,1,0) = (1,1,1). What is T(5,3,2)?

b) Is there a liner transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ which satisfies T(1,1) = (1,1,0), T(1,-1) = (1,1,1) and T(3,1) = (1,0,0)?

Problem 7. Let $T: V \longrightarrow W$ be a liner transformation.

- a) Prove that T is injective iff there is a liner transformation $S: W \longrightarrow V$ such that ST is the identity map on V.
- b) Prove that T is surjective iff there is a liner transformation $S: W \longrightarrow V$ such that TS is the identity map on W.

Problem 8. Let $T:V\longrightarrow V$ be a linear transformation. Suppose that $v\in V$ is such that $T^n(v)=0$ but $T^{n-1}(v)\neq 0$. Prove that $v,T(v),T^2(v),...,T^{n-1}(v)$ are linearly independent. Here T^k is the composition $T\circ T\circ...\circ T$ of T with itself k-times.

Problem 9. Let $T:V\longrightarrow V$ be a linear transformation such that T and T^2 have the same image. Prove that $V=\ker T\oplus\operatorname{Im} T$.

1