Homework 6

due on Wednesday, November 17

Problem 1. Let $T: V \longrightarrow V$ be a linear transformation. Suppose that $0 < k < \dim V$ and that every subspace of V of dimension k is T-invariant. Prove that T = aI for some constant a.

Problem 2. a) Let $T: V \longrightarrow V$ be a linear transformation. Prove that $\ker T^i \subseteq \ker T^{i+1}$ and $\operatorname{Im} T^{i+1} \subseteq \operatorname{Im} T^i$ for every non-negative integer i. Prove furthermore that if $\ker T^k$ and $\ker T^{k+1}$ have the same dimension for some integer k then all the kernels $\ker T^i$ have the same dimension for $i \geq k$.

b) Use a) to show that if the matrices A^k and A^{k+1} have the same rank, then all the matrices A^i with i > k have the same rank.

Problem 3. Let K be a field.

- a) Let $f(x), g(x) \in K[x]$ and $g(x) \neq 0$. Prove that there exist unique polynomials d(x) and r(x) such that $\deg r < \deg g$ and f = dg + r. The polynomial r is called the **remainder** upon division of f by g. Find d and r if $f(x) = x^5 x^3 + 3x 5$ and $g(x) = x^3 + x 1$ (use the division algorithm for polynomials).
- b) Let $f(x), g(x) \in K[x]$ and $f(x) \neq 0$. Prove that there exists unique monic polynomial d(x) such that
 - i) d(x) divides both f(x) and g(x);
 - ii) if h(x) divides both f(x) and g(x) then h(x) divides d(x).

Furthermore, prove that d(x) = a(x)f(x) + b(x)g(x) for some polynomials $a, b \in K[x]$. Conclude that if L is a subfield of K and both f, g belong to L[x] then $d \in L[x]$.

The polynomial d is called the **greatest common divisor** of f and g and it is denoted by gcd(f,g). Given f, g one can compute d using **Euclidean** algorithm: define $f_0 = g$, $f_1 = f$ and for $n \geq 2$ define f_n as the remainder upon division of f_{n-2} by f_{n-1} if $f_{n-1} \neq 0$ and as 0 otherwise (i.e. if $f_{n-1} = 0$). Then d is the last non-zero member of the sequence f_n divided by its leading coefficient (to make it monic).

- c) Find the greatest common divisor of $x^5 + 7x^4 x^3 13x^2 2x 2$ and $x^4 + 6x^3 8x^2 12x + 12$.
- d) Prove that if $f(x) \in K[x]$ has degree at most 3 then f is irreducible iff f has no roots in K.

Problem 4. Let U be a T-invariant subspace of V and let S be a subset of V. Prove that the set I of all polynomials f such that $f(T)(v) \in U$ for every $v \in S$ (i.e. $I = \{f : f(T)(v) \in U \text{ for all } v \in S\}$) is an ideal. Show that this ideal contains non-zero polynomials. Consider the case when $U = \{0\}$ and S = V and conclude that there exists a monic polynomial q_T such that for any polynomial f, we have f(T) = 0 iff f. The polynomial f is called the **minimal polynomial** of f.

Problem 5. Let $T: V \longrightarrow V$ be a linear transformation and let $v \in V$ be a non-zero vector.

a) Prove that any T-invariant subspace of a cyclic subspace is cyclic.

Hint. Let U be a T-invariant subspace of $\langle v \rangle$. Consider the unique monic polynomial q

with the property that for any polynomial f, we have $f(T)(v) \in U$ iff q|f (we proved in class that it exists). Show that $U = \langle w \rangle$, where w = q(T)(v). Show also that $q|p_v$.

- b) Prove that if p_v is a power of an irreducible polynomial and U, W are T-invariant subspaces of < v > then either $U \subseteq W$ or $W \subseteq U$. Conclude that < v > cannot be decomposed into a direct sum of proper T-invariant subspaces.
- c) Prove that a cyclic subspace $\langle v \rangle$ cannot be decomposed into a direct sum of its proper T-invariant subspaces iff p_v is a power of an irreducible monic polynomial.

Hint. If p_v is not a power of an irreducible polynomial, then there are an irreducible polynomial q, a positive integer l and a polynomial f not divisible by q such that $p_v = q^l f$. Set $u = g^l(T)(v)$ and w = f(T)(v) and show that $\langle v \rangle = \langle u \rangle \oplus \langle w \rangle$.

- d) Show that $\langle w \rangle = \langle v \rangle$ iff w = f(T)(v) for some polynomial f relatively prime to p_v .
- e) Let f be a polynomial. Describe p_w for w = f(T)(v).

Hint. Show that $p_w = p_v/h$, where h is the greatest common divisor of p_v and f.