Math 507, Midterm

November 8, 2004

Problem 1. Let $\mathbf{v}_1 = (1, 1, 1, 1, 1, 1, 1, 1)$, $\mathbf{v}_2 = (1, 0, 1, 0, 1, 0, 1)$, $\mathbf{v}_3 = (1, 1, 1, 1, 2, 1, 1)$, $\mathbf{v}_4 = (0, 1, 0, 0, 0, 1, 0)$, $\mathbf{v}_5 = (1, 1, 0, 0, 0, 1, 1)$ and $U = \mathrm{span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\})$. Let $W \subseteq K^7$ be the space of solutions to the system $x_3 - x_5 = 0$, $x_4 = 0$.

- a) Find a homogeneous system of equations with the space of solutions equal to U. (6 points)
- b) Find a basis of $U \cap W$. (6 points)
- c) What can you say about U + W? (4 points)

Problem 2. a) Find the reduced row-echelon form of the matrix $A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}$. **(6 points)**

- b) Express A as a product of elementary matrices. (5 points)
- c) Find the determinant of A. (5 points)
- d) Write down the matrix $A_{4,4}$ and compute its inverse. Verify your answer. (5 points)

Problem 3. a) A linear transformation $S: \mathbb{R}^6 \longrightarrow \mathbb{R}^4$ is given by the matrix $A = \begin{pmatrix} 2 & 3 & 1 & 4 & -9 & 17 \\ 1 & 1 & 1 & 1 & -3 & 6 \\ 1 & 1 & 1 & 2 & -5 & 8 \\ 2 & 2 & 2 & 3 & -8 & 14 \end{pmatrix}$

Find bases of the kernel and of the image of S. (6 points)

b) The matrix of a linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ in the ordered basis (2,1,1), (2,2,1), (3,2,2)

of \mathbb{R}^3 and the ordered basis (2,1,0,0),(0,0,1,1),(0,1,0,1),(1,0,1,0) of \mathbb{R}^4 equals $B=\begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix}$.

Find the matrix of T in the standard bases. (6 points)

Problem 4. Answer true or false. In each case provide an explanation (4 points each).

- a) There exists a surjective linear transformation $T: \mathbb{R}^7 \longrightarrow \mathbb{R}^3$ whose kernel has dimension 5.
- b) If $T:V\longrightarrow V$ is a linear transformation then $\mathrm{Im}T$ is a T-invariant subspace.
- c) The function $T(a,b)=(a^2,ab,b^2)$ is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 .
- d) There exists a linear transformation $T: K^5 \longrightarrow K^5$ such that $\ker T = \operatorname{Im} T$.
- e) det(A + B) = det A + det B for any two 3×3 matrices A, B.
- f) The matrices $\begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{pmatrix}$ and $\begin{pmatrix} 2 & -1 & -2 \\ 0 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix}$ are similar.

Problem 5. a) Let $T:V\longrightarrow V$ be a linear transformation. Suppose that every one dimensional subspace of V is T-invariant. Prove that T=aI for some constant a. (9 points)

- b) Let $T: V \longrightarrow V$ be a linear transformation. Suppose that the annihilator of a vector $u \in V$ is $p_u = x + 1$ and the annihilator of v is $p_v = x 1$. Prove that the annihilator of v + v equals v = v + 1 points)
- c) Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation such that $T(v) v \in \text{Im}(T)^{\perp}$ for all $v \in \mathbb{R}^n$. Prove that $T^2 = T$. (9 points)

1

The following problems are optional. You may earn extra points, but work on these problems only after you are done with the other problems.

Problem 6. Let A be an invertible matrix with all entries integers. Show that det A is an integer. Prove that all entries of A^{-1} are integers iff det $A = \pm 1$. (8 points)

Problem 7. Let A be a 4×4 matrix whose all entries are from the set $\{-3, 2\}$. Prove that det A is divisible by 125. (8 points)

$$\begin{pmatrix} 2 & 3 & 1 & 4 & -9 & 17 \\ 1 & 1 & 1 & 1 & -3 & 6 \\ 1 & 1 & 1 & 2 & -5 & 8 \\ 2 & 2 & 2 & 3 & -8 & 14 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 2 & 0 & -2 & 3 \\ 0 & 1 & -1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & -2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 & -2 \\ 0 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix}$$