Solutions to the Midterm

Solution to Problem 1. Let v; = (1,1,1,1,1,1,1), vo = (1,0,1,0,1,0,1), v3 = (1,1,1,1,2,1,1),
v4 =(0,1,0,0,0,1,0), vs = (1,1,0,0,0,1,1) and U = span({v1, va, V3, Vs, V5}). Let W be the space of
solutions to the system x3 — x5 = 0, x4 = 0. Both U and W are subspaces of K7.

a) In order to find a homogeneous system of equations with the space of solutions equal to U we
determine a basis of U, i.e. we find a basis of solutions to the homogeneous system of equations with
coefficient matrix equal to

1 11 1 1 11
1 01 0101
1111211
01 00O0OT1O0
1100 011
The reduced row echelon form of this matrix is
10 0 00 01
01 00O0OT1O
001 0O0O0OTO
0001 0O0TO
000 0100

We see that there are two non-pivot columns which correspond to free variables zg and x7. Thus U+
has dimension 2 and basis (0,-1,0,0,0,1,0), (-1,0,0,0,0,0,1). Consequently, U is the solution space
to the system of 2 equations:

—z9+2x6 =0, —z1+z7=0.

Note also that dimU = 7 — dim U+ = 5.

b) We found in a) equations for U and we are given equations for W. The intersection U N W is the
solution space to the combined system, i.e. to the system of equations

—zo+ax6=0, —x1+x7y=0, z3—25=0, 24=0

The coefficient matrix of this system equals

0O -1 0 0 0 1 0
-1 0 0 0 0 01
0 0 1.0 -1 0O
0 0 01 0 0O
and its reduced row-echelon form is
1 000 O 0 -1
0100 0 -1 0
0 010 1 0 0
0 001 O 0 0

We have 3 free variables and a basis of solutions (0,0,1,0,1,0,0), (0,1,0,0,0,1,0), (1,0,0,0,0,0,1).
This is a basis of U N W and therefore U N W has dimension 3.

c) Note that W = {(0,0,1,0,—1,0,0),(0,0,0,1,0,0,0)}*. Since the vectors (0,0, 1,0,—1,0,0), (0,0,0,1,0,0,0)
are linearly independent, we have

dmW =7—dmW't=7-2=5.

Thus
dim(U+ W) =dimU +dimW —dim(UNW)=5+5-3=17.

Since U 4+ W is a subspace of K7, we have U + W = K.



Solution to Problem 2. Let A =

- N = O
= O N =
O = W=
N = s =

a) In order to find the reduced row-echelon form of A perform the following elementary row operations:
T2, E31(—2), E4,1(—1), E12(—2), E32(4), E42(1), S3(—1), E1 3(—1), E2 3(—1), E4,3(2), S4(1/5)
We see that the reduced row-echelon form of A is the identity matrix. Thus

S4(1/5)Ey3(2)E2 3(—1)E1 3(—1)S3(—1)E42(1)Es 2(4)E1 2(—2)Es1(—1)E3 1(—2)T120A =1

b) From a) we get that
A = (S4(1/5)Eq3(2)E23(—1)E1,3(—1)S3(—1)Ey2(1)E3 2(4) By 2(—2)Ea1(—1)E31(=2)T12) ' =
=T, E31(—2)""Eg1(—1) " E12(—2) 'E32(4) 'E42(1) 'S3(—1) "E13(—1) "Ey3(—1) 'E43(2) 'S4(1/5) " =
=T 2F31(2)Eq1(1)E1 2(2)E3 5(—4)Ey2(—1)S3(—1)E1 3(1) B 3(1) Eq,3(—2) S4(5)

c) Recall that det E; j(a) = 1, detT; ; = —1 and det S;(a) = a. Using this and b) we see that det A =
(-1)-(-1)-5=5.

d) In general, A, is the matrix obtained from A by removal of s-th row and ¢-th column. Thus

011
Asga=|1 2 3
2 01
In order to find (A4,4) ! we row-reduce the matrix
011100
123010
201001
and get
100 2 -1 1
010;5-21
001:—4 2 -1
Thus
2 -1 1
Ajgg=1| 5 -2 1
-4 2 -1

In order to verify the answer we perform the multiplication

011 2 -1 1
1 2 3 5 -2 1| =1
2 01 -4 2 -1

Solution to Problem 3. a) A linear transformation S : R® — R? is given by the matrix A =
2 31 4 -9 17
1111 -3 6
1112 -5 8
2 2 2 3 -8 14

row-echelon form

In order to find bases of the kernel and of the image of S we find the reduced

10 2 0 -2 3
01 -1 0 1 1
00 0 1 -2 2
00 0 0 0 O



of the matrix A. Recall that ImS is the column space of A so the pivot columns of A form a basis of
ImS. Thus (2,1,1,2), (3,1,1,2), (4,1,2,3) is a basis of ImS.

The kernel ker S is the solution space to the homogeneous system of linear equations with co-
efficient matrix A. Thus from the reduced row-echelon form of A we deduce that (-2,1,1,0,0,0),
(2,-1,0,2,1,0), (-3,—-1,0,—2,0,1) is a basis of ker S.

b) The matrix of a linear transformation 7 : R® — R* in the ordered basis v : (2,1,1),(2,2,1),(3,2,2)
2 31
of R? and the ordered basis w : (2, 1,0,0),(0,0,1,1), (0,1,0,1), (1,0,1,0) of R* equals B = i i ;
2 2 3

In other words, B = MY (T). The matrix MS(T') of T in the standard bases is given by

ME(T) = My (I MY (T) M (I).

‘We have
2 0 01
1 010
e _
Mu=10 1 0 1
0110
and
2 2 3
Me()=[1 2 2
1 1 2
Thus )
2 2 3\ 2 -1 =2
MYI)=M(I)'=|1 2 2 =10 1 -1
1 1 2 -1 0 2
It follows that
OO oy (D2
o ) _
Me(T)_OIOI 112_01(1)21_20—1
01 10 2 2 3 -1 0 0

Solution to Problem 4.

a) False. A surjective linear transformation 7 : R” — R3 has kernel of dimension dimkerT = 7 —
dimImT =7 -3 =4#5.

b) True. If v € ImT then T'(v) € Im(T') by the very definition of the image. Thus ImT is a T'—invariant
subspace.

c) False. We have T'(2(1,1)) = T(2,2) = (4,4,4) # 2T(1,1) = (2,2,2) so T is not a linear transforma-
tion.

d) False. Let a = dimker T, b = dimIm7', so a + b = 5. If a = b, then 2a = 5, which is not possible.

e) False. There are many counterexamples. For example, take A = I = B. Then det(A+B) = det 2] = 8
and det A+detB=1+4+1=2.

2 2 3 2 -1 =2
f) False. The matrix |1 2 2| has trace 6 and the matrix | 0 1 —1] has trace 5 so they are
11 2 -1 0 2

not similar.

Problem 5. a) Let T : V — V be a linear transformation such that every one dimensional subspace
of V is T-invariant. Let v € V be a non-zero vector. Since the one dimensional subspace span{v} is
T invariant, T'(v) = a(v)v for some scalar a(v). We claim that a(v) must be the same for all vectors
v. In fact, let w be another non-zero vector. If w € span{v} then w = cv for some scalar ¢, so



T(w) = T(cv) = cT'(v) = ca(v)v = a(v)(cv) = a(v)w, so a(w) = a(v). If w & span{v}, then v and w are
linearly independent. Note that

T(v+w) =a(v+w)(v+w) =alv+wv+alv+ w)w.

On the other hand,
T(v+w) =T(v) + T(w) = a(v)v + a(w)w.

It follows that a(v + w)v + a(v + w)w = a(v)v + a(w)w, i.e. that
(a(v+w) —a))v+ (a(v +w) — a(w))w = 0.

The linear independence of v and w implies that a(v + w) — a(v) = 0 = a(v + w) — a(w), i.e. that
a(v) = a(v 4+ w) = a(w). This proves our claim that a(v) = a does not depend on v. Thus T'(v) = av
forallveV,ie T =al.

b) Let T : V — V be a linear transformation. Suppose that the annihilator of a vector u € V is
Dy = = + 1 and the annihilator of v is p, = x — 1. This means that (T'+ I)(u) = 0 and (T — I)(v) =0,
i.e. T(u) = —u and T'(v) = v. Furthermore, u # 0 and v # 0 (since < 0 >= {0} has dimension 0 and
both < u > and < v > have dimension 1).

The vectors u + v and T'(u+ v) = —u + v are linearly independent. In fact, suppose that a(u + v) +
b(—u+v) =0, ie (b—a)u=(b+ a)v for some scalars a,b. Applying T to the last equality yields

(a=bu=T(b—a)u) =T((b+ a)w) = (b+ a)w.

It follows that (a — b)u = (b — a)u. Since u # 0, we conclude that ¢ = b and 0 = 2aw. Thus 2a = 0,
since w # 0. We see that a = 0 = b ( we must assume that 2 # 0, i.e. that the field of scalars is not of
characteristic 2).

We proved that u + v and T'(u + v) = —u + v are linearly independent. But T2%(u + v) = (u +v) =
1-(u+v)+0-T(u+v) so the annihilator of u + v is indeed z2 — 1.

c) Let U be a subspace of R*. Suppose that u = (u1,...,u,) € UNUL. Then u-u = 0. But
w-u=ul+ud+..+u2 =0iff ug = up = ... = u, = 0 (here we use the fact that our field is R, so that
sum of squares can be zero if and only if each summand is 0; this is not true for complex numbers or
finite fields). We see that u = 0, i.e. UNU*L = {0}.

We apply the above observation to U = Im(T)*, so Im(T)* N Im(T) = {0}. Let v € R*. Then
T?%(v) — T(v) = T(T(v) — v) € Im(T). On the other hand, T?(v) — T(v) = T'(u) — u € Im(T)*, where
u = T(v). It follows that T%(v) — T(v) € Im(T)* NIm(T) = {0}., i.e. T?>(v) = T(v). Thus T? = T.

Problem 6. Let A = (a; ; be an invertible n x n matrix with all entries integers. Recall that
det A = Z sign (1)} i - ()

It is clear now that det A is an integer (alternatively, use induction on n and row (column) expansion).
If all entries of A~! are integers then det A=! = 1/det A is an integer. Thus both det A and 1/det A
are integers. It follows that det A = +1.

Suppose now that det A = +1. Recall that A~! = (det A) *AP, where AP = (d;;) is the n x n
matrix such that d; ; = (—1)**7 det(A;;). Thus if A has integral entries then so does A”. Since in our
case A~! = + AP, the matrix A~! has integral entries.

Problem 7. Let A be a 4 x 4 matrix whose all entries are from the set {—3,2}. Apply the ele-
mentary row operations Ei 4(—1), Ea4(—1), E34(—1) to A. The resulting matrix B has the same
determinant as A. Note that the all entries in the first three rows of B are in {£5,0}. It follows that
S1(1/5)S2(1/5)S3(1/5)B has integral entries. Thus det(S1(1/5)S2(1/5)S5(1/5)B) = det B/125 is an
integer. In other words, 125 divides det B = det A.



