
CONSTRUCTING GROUPS

There are several methods of building new groups out of already constructed. We

are going to described some of them.

Direct Products.

Let Gi, i ∈ I be a collection of groups indexed by a set I. The direct product

G = Πi∈IGi is the set of all functions f : I −→
⋃

i∈I Gi such that f(i) ∈ Gi for

all i ∈ I (i.e. it is the product of the sets Gi) equipped with group operation •

defined by (f • g)(i) = f(i)g(i) (multiplication in the group Gi) for all i ∈ I. The

verification that G is a group with respect to this operation is starighforward. Each

Gi can be identified with a subgroup of G as follows: g ∈ Gi corresponds to the

function h such that h(i) = g and h(j) = e (the identity in Gj) for all j 6= i. It

is easy to see that the groups Gi are pairwise disjoint, normal subgroups of G and

elemnts in Gi commute with elements in Gj for i 6= j. For each i there is a natural

homomorphism πi : G −→ Gi (called projection onto Gi) defined by πi(f) = f(i).

The direct product has the following property:

For any family of group homomorphisms fi : H −→ Gi, i ∈ I, there is unique

homomorphism f : H −→ G such that πif = fi for all i ∈ I. It is defined by

f(h)(i) = fi(h) for all i ∈ I.

From the point of view of general category theory, the direct product is just the

product in the category of groups.

Direct sums.

The direct sum of a family of groups Gi, i ∈ I, is the subgroup D =
∑

i∈I Gi

of Πi∈IGi which consists of all functions which satisfy f(i) = e (the unit in Gi) for

all but a finite number of i ∈ I. It is easy to see that the direct sum is a normal

subgroup of the direct product. Moreover, D contains all the subgroups Gi and

these subgroups generate D. The direct sum has the following universal property:
1
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For any family of group homomorphisms gi : Gi −→ H, i ∈ I, such that [gi(Gi), gj(Gj)] =

{e} for all pairs i 6= j there is unique homomorphism g :
∑

i∈I Gi −→ H which co-

incides with gi on Gi for all i ∈ I. For any f ∈
∑

i∈I Gi the image g(f) is defined

as the product of all gi(f(i)) for i ∈ I. Note that this is well defined, since the

product involves only a finite number of nonidentity elements in H and the order in

which this product is taken is irrelevant due to the fact that the multiplied elements

pairwise commute.

In particular, if all Gi are commutative then
∑

i∈I Gi is commutative and it is the

coproduct of Gi in the category of commutative groups.

The direct sum of a finite family of groups coincides with the direct product of

this family (and for infinite families of nontrivial groups these two groups never

coincide).

We are going to discuss now a direct product of a finite family of groups G1,...

Gn more carefully. In this case G = Πn
i=1Gi = G1 × ... × Gn can be identified

with n−tuples (g1, ..., gn) such that gi ∈ Gi and the multiplication is performed

coordinatewise. We have seen that Gi are normal subgroups of G, they pairwise

commute, any two have trivial intersection and they generate G. In fact more is

true: the kernel kerπi coincides with the product of all Gj with j 6= i (the order in

which the product is taken does not matter since the Gi’s pairwise commute), so

kerπi∩Gi = {e} for all i. This properties in fact characterize finite direct products:

Proposition 1. Suppose G is a group with normal subgroups G1,...,Gn such that:

• G is generated by G1 ∪ ... ∪Gn;

• for every i, the product of all Gj with j 6= i has trivial intersection with Gi.

Then G = G1...Gn and it is naturally isomorphic with G1 × ...×Gn.

The proof follows easily from the universal property of direct sums once the pair-

wise commutativity of Gi and Gj is established for all i 6= j. This in turn follows

from the following simple but fundamental observation:

Lemma 1. If K, L are normal subgroups of a group G such that K ∩L = {e} then

[K,L] = {e}.
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In fact, if k ∈ K and l ∈ L then [k, l] = (klk−1)l−1 = k(lk−1l−1), so [k, l] ∈ K ∩L,

hence it is trivial.

Exercise. Let G be the direct product of countable many copies of Z, i.e. G =

Π∞

i=1Ai, where Ai = Z for all i. Let H be the direct sum of these groups.

a) Prove that if φ : G −→ Z is a homomorphism such that H < kerφ, then

kerφ = G.

b) Prove that G is not isomorphic to a direct sum of the form
∑

i∈I Z.

c) An abelian group without elements of finite order B is called slender, if every

homomorphisms ψ : G −→ B maps all but a finite number of Ai to the identity of

B. Prove that Z is slender.

d) Prove that there is no epimorphism of G onto H.

Exercise. Let G be a finite group and H a minimal nontrivial normal subgroup

of G (i.e. nontrivial normal subgroup of G which does not contain any proper,

nontrivial normal subgroup of G). Prove that H is a direct product of several copies

of a simple group.

Semidirect products.

As we have seen above, if K,H are normal subgroups of G such that K∩H = {e}

and K ∪H generate G then G is isomorphic to a direct product K ×H.

Suppose now that we keep all the assumptions except that we no longer require H

to be a normal subgroup. Then still G = KH and each element of G can be uniquely

written as kh with k ∈ K and h ∈ H. Thus, as sets G and K×H can be identified.

But it is no longer true that multiplication in K×H obtained from this identification

is coordinatewise, i.e. it is in general not true that (kh)(k′h′) = (kk′)(hh′). Instead,

we have the following

(kh)(k′h′) = (k(hk′h−1))(hh′).

In other words, in order to recover G we not only need to know K and H but also

the way in which elements of H interact with elements of K. To spell this out more

precisely we need to discuss groups of automorphisms of groups.
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For any group G, the set of all automorphisms of G forms a group under composi-

tion which is usually denoted by AutG. Given G, it is usually a challenging problem

to understand AutG. Note that for every g ∈ G conjugation by g is an automorphism

of G, since g(ab)g−1 = (gag−1)(gbg−1), and the inverse automorphism is conjugation

by g−1. It is straightforward to verify that the function con : G −→ AutG which

takes g to conjugation by g is a group homomorphism. The image of con is denoted

by InnG and its elements are called inner automorphisms. The kernel of con

coincides with the center of G, so if G has trivial center, it can be considered as a

subgroup of AutG.

More generally, if N is a normal subgroup of G then for any g ∈ G, conjugation

by g induces an automorphism of N and we get in this way a group homomorphism

from G to AutN . The kernel of this homomorphism is called the centralizer of N

in G.

Exercise. Show that InnG is a normal subgroup of AutG. The quotient AutG/InnG

is usually denoted by OutG and called the group of outer isomorphisms of G.

Exercise. Describe all automorphisms of a cyclic group of order n.

Exercise. Prove that AutSn is isomorphic to Sn for all n 6= 2, 6. Show that for

n = 2, 6 this is false. Describe AutAn for n ≥ 5.

Let us return to our discussion. The way H and K interact is best described by

the homomorphism φ : H −→ AutK which takes h to the automorphism of K given

by conjugation by h. We can now write

(kh)(k′h′) = (kφ(h)(k′))(hh′).

In other words, K, H and φ determine G.

This observation leads to the definition of a semidirect product of groups. Let

K, H be groups and φ : H −→ AutK a group homomorphism. The semidirect

product K oφ H is the set K ×H with multiplication • given by

(k, h) • (k′, h′) = (kφ(h)(k′), hh′).

It is a simple exercise to verify that • is indeed a group operation. When there is

no confusion about φ we usually write just K o H for the semidirect product. An
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element of the form (k, e) can be identified with k and element of the form (e, h)

can be identified with h. In this way K becomes a normal subgroup of K o H, H

becomes a subgroup and hkh−1 = φ(h)(k) for all h ∈ H and k ∈ K. Note that if φ

is the trivial homomorphism, then the semidirect product coincides with the direct

product.

Exercise. a) Prove that if φ, ψ : H −→ AutK are such that φ−1ψ is an inner

automorphism, then the groups K oφ H and K oψ H are isomorphic.

b) Suppose furthermore that there is no surjective map from K onto Z and that

H = Z. Show that K oφ H and K oψ H are isomorphic iff φε and ψ are conjugate

in OutK, where ε = 1 or ε = −1.

Exercise. a) Show that Dn is isomorphic to Cn oφ C2 for some φ, where Cn is the

cyclic group of order n.

b) Prove that D∞ ≈ Z oφ C2 for some φ.

Exercise. Let G = ⊕∞

i=−∞
C, where C = {0, 1} is the group of order 2. Thus G

consists of all functions f : Z −→ C such that f(i) = 0 for all but finitely many i.

Define an automorphism t : G −→ G by (tf)(i) = f(i − 1) (so it is a shift). Let

φ : Z −→ AutG be given by φ(1) = t. Set H = Go Z.

a) Prove that H is generated by (0, 1) and (g, 0) where g(0) = 1 and g(i) = 0 for all

i 6= 0.

b) Show that [H,H] is the subgroup of G which consisits of all f for which f(i) = 1

for an even number of i.

c) Conclude that the derived group of a free group on two generators is not finitely

generated (this is true for any nonabelian free group).

Free Products.

We have seen that the product in the category of groups coincides with the direct

product. Is there a coproduct in the category of groups? Let Gi, i ∈ I be a family

of groups. The categorical coproduct is by definition a group G together with group

homomorphisms τi : Gi −→ G such that for any group H and homomorphisms
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fi : Gi −→ H there is unique homomorphism f : G −→ H such that fi = fτi for all

i.

Coproducts indeed exist in the category of groups and they usually are called

free products. To define them, let X be the disjoint union of the sets Gi, i ∈ I.

Consider the free group F (X). To avoid any confusion, we denote the multiplication

in Gi by •i, and the unit element by ei. Let R be the subset of F (X) which consists

of all words of the form ab(a •i b)
−1 where i ∈ I and a, b ∈ Gi. The free product

Fi∈IGi is defined as < X|R >, i.e. it is the quotient of F (X) by the smallest normal

subgroup which contains R.

Exercise. Verify that the free product defined above is indeed the coproduct in the

category of groups.

Exercise. Show that the free product can be defined alternatively as follows. Con-

sider the set of all words on X (notation as above). For x ∈ X we write i(x) = i

if x ∈ Gi. We say that a word w = a1...ak is proper if either it is the empty word

or aj 6= ei(aj) for all j = 1, 2, ..., k and i(aj) 6= i(aj+1) for j = 1, ..., k − 1. We define

multiplication of proper words by induction on the length of the words as follows

• e � w = w � e = w for all proper words w;

• suppose that the multiplication of proper words of lengths ≤ k − 1 has been

defined. For any proper words w = y1y2...yl and w′ = y′1...y
′

m with l,m ≤ k

define

w � w′ =



















y1...yly
′

1...y
′

m if i(yl) 6= i(y′1),

y1...(yl •i y
′

1)...y
′

m if i = i(yl) = i(y′1) and y−1
l 6= y′1,

(y1...yl−1) � (y′2...y
′

m) if y−1
l = y′1.

Verify that so defined product makes the set of reduced words a group and that

this group is isomorphic to the free product Fi∈IGi.

Exercise. a) Show that the free group F (X) can be identified with Fi∈XGi, where

Gi = Z for all i ∈ X.

b) Prove that D∞ is isomorphic to C2 ? C2 where C2 is the group of order 2.
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c) Prove that PSL2(Z) is isomorphic to C2 ? C3, where Ck is the cyclic group of

order k.


