APPLICATIONS OF SYLOW THEOREM

We are going to discuss now how Sylow theorem can be used to investigate finite
groups, in particular to show that a particular finite group is not simple/is solvable/is
abelian. Let G be a group, p a prime and |G| = p*m with (m,p) = 1. The following

techniques are very useful in proving that G is not simple:

e we know that the number ¢, of Sylow p—subgroups of G divides m and
p|(t,—1). Inspect the divisors of m to show that ¢, = 1 is the only possibility.

e if the above does not work, perhaps you can conclude that either ¢, =1 or ¢,
is quite large. Assuming the latter case, count the number of p—elements
(i.e. elements of p—power order) to show that you get too many, or that it
forces that t, = 1 for some other prime ¢||G].

e try several different primes and show that counting for all of them at once
leads to a contradiction (too many elements) unless ¢, = 1 for some g.

e try to find a subgroup of G of relatively small index and study the corre-
sponding permutation representation on left cosets. Show that the kernel of
this representation is not trivial, so it provides a normal subgroup.

e combine all the above methods and apply them not only to G but to some

subgroups of G (like centralizers or normalizers of some p—subgroups,...).

The best way to get a better understanding of the above ideas is to work out

several examples.

Groups of order pg We are now going to discuss groups G of order pq, where p

and ¢ are primes.

Exercise. a) Prove that a group of order p? is abelian (use the fact that it has a

nontrivial center).

b) Prove that group of order p? is either cyclic or isomorphic to a direct product of

two cyclic groups of order p.
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We assume now that p < g. Let us first analyze the number ¢, of Sylow g—subgroups.
We have t,|p so t, < p. But also q|(t, — 1) so either ¢, = 1 or ¢, > ¢g. Since ¢ > p, we
see that the only possibility is that ¢, = 1. Thus G has a normal Sylow g—subgroup
C,. Since its order is g, it is cyclic and contains all elements of G of order q. Choose
a generator a for Cj.

The group G has a subgroup C, of order p. It is cyclic. Note that C,NC, = {1},
since p # ¢. Also, C,C, = G (just count the elements). It follows that G is a
semidirect product C, x4 C, for some homomorphism ¢ : C,, — AutC,.

Recall now that AutC), is isomorphic to the multiplicative group of the field T,
of order g. In fact, for f € AutC, we have f(a) = a* for some 7 prime to ¢ and the
map which assigns to f the residue of ¢ modulo ¢ is an isomorphism from AutC,
onto Fy. In particular, the order of AutC, equals ¢ — 1. It is a well known result of
elementary number theory that I is cyclic (existence of primitive roots). We will
prove this result later, when we discuss fields.

Since the order of AutC, equals ¢ — 1, ¢ has to be trivial unless p|(¢ — 1). Thus,
if p4 (¢ —1) then G is the direct product of C, and C,, hence it is cyclic of order pq
(this also follows from Sylow theorem).

Suppose now that p|(¢ — 1) and ¢ is not trivial. Then ¢ is injective. Since AutC|,
is cyclic, it has unique subgroup < f > of order p, which then coincides with the
image of ¢. Thus there is b € C, such that ¢(b) = f. Clearly C, =< b >. So we see
that G is uniquely defined by the requirement that ¢ is not trivial. It is not hard to
see that G has a presentation < a,bla? = 1 = b, bab™" = a* >, where i is such that
f(a) =a'.

We proved the following

Theorem 1. Let G be a group of order pq where p < q are primes. If pt (g — 1)
then G is cyclic. If p|(q — 1) then either G is cyclic or G is non abelian given by
a presentation < a,bla? = 1 = WP, bab ! = a' >, where i is any integer for which
q — 1 is the smallest positive integer k such that q|i* (different choices of i produce

isomorphic groups). In any case, G has a normal subgroup of order q.

Groups of order 144
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We are now going to show that there is no simple group of order 144. Several

important techniques will be described in the course of the proof.

Suppose to the contrary that G is a simple group of order 144 = 2432

(1)

We claim that G has no proper subgroups of index smaller than 6. In fact,
if k=[G : H] <5 then the permutation representation on the left cosets of
H is a nontrivial homomorphism 7 : G — Sj. Since 144 > 120 = 5! > k!,
m can not be injective, so ker 7 is a nontrivial proper normal subgroup, a
contradiction.

Consider the set Syls of Sylow 3—subgroups of G. Its cardinality ¢3 divides
16 and is congruent to 1 modulo 3. Thus t3 € {1,4,16}. We can not have
t3 = 1, since this would mean that G has a normal Sylow 3—subgroup. Recall
the following important fact:

the number ¢, of Sylow p—subgroups of G equals [G : Ng(P)], where
P is any Sylow p—subgroup of G.

Thus t3 = [G : Ng(P)] > 6 by (1). We see that t3 = 16 is the only possibility.
Suppose that P, P’ are different Sylow 3—subgroups. They have order 9,
hence are abelian. We claim that P N P’ = {1}. Suppose not. Then Q =
P N P’ has order 3. The normalizer Ng(@Q) is a proper subgroup of G and
it contains both P and P’. In particular, the order of Ng(Q) is divisible
by 9 and larger than 9, i.e it is 2* -9 for some 1 < u < 3. It follows that
1 < [G: Ng(Q)] = 247* < 8. By (1), we have [G : Ng(Q)] = 8 and
consequently |Ng(Q)| = 18. But then both P, P’ are of index 2 in Ng(Q),
so they are normal. We see that both P, P’ are normal Sylow 3—subgroups
of Ng(@Q), so P = P’, a contradiction.

Thus any two distinct Sylow 3—subgroups of G have trivial intersection.
The total number of nontrivial elements in these groups (i.e. the number
of nontrivial 3—elements in G) equals ¢3(9 — 1) = 128 by (2). There are 16
elements left. Since G has a subgroup of order 16, these element form the
unique subgroup of order 16 in G, i.e. t = 1. Thus G has a normal Sylow

2—subgroup, a contradiction.

Simple groups of order 60
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The goal now is to prove that if G is a simple group of order 60 then G = As;.
Let G be simple, |G| = 60 =223 - 5.

(1) We claim that if G has a proper subgroup of index < 5, then G = A;. In
fact, suppose [G : H] = k < 5. Consider the permutation representation
of G on left cosets of H. It is a nontrivial homomorphism 7 : G — S.
Since G is simple, 7 is injective. Thus 60|k!, so k = 5 (since k < 5). Thus
7(G) is a subgroup of index 2 in S5, hence normal. We have seen that
the only nontrivial proper normal subgroup of S5 is A5 so 7 establishes an
isomorphism between G and As.

(2) It remains to show that G has a subgroup of index < 5. Suppose not.
Consider the set Syly(G). Let P € Syls. Thus ty = [G : Ng(P)] > 6. But t,
divides 15, so t; = 15 is the only possibility.

(3) Let P, P’ be different Sylow 2—subgroups. They have order 4, hence are
abelian. We claim that P N P’ = {1}. Suppose not, then @ = PN Q' has
order 2 and the normalizer Ng(Q) is a proper subgroup of G and it contains
both P and P’. In particular, the order of Ng(@Q) is divisible by 4 and larger
than 4. It follows that [G : Ng(Q)] is a proper divisor of 15, hence does not
exceed 5. This contradicts (2).

(4) We see that any two distinct Sylow 2—subgroups of G have trivial inter-
section. We count now the number of nontrivial 2—elements. It equals
ta(4 — 1) = 45 by (2). We also count nontrivial 5—elements. Note that
ts > 1 and 5|(t5 — 1), so t5 > 6. Since Sylow 5—subgroups of G have order
5, distinct Sylow 5—subgroups have trivial intersection. Thus the number of
nontrivial 5—elements is t5(5 — 1) = 4t5 > 24. This implies that G gas at

least 45 + 24 = 69 elements, a contradiction.

Groups of order 9555

We discuss one more example and prove that groups of order 9555 are not simple.

Suppose that G is a simple group of order 9555 = 3 -5- 72 - 13.

(1) We claim that G has no subgroups of index < 12. In fact, if [G : H| = k < 12,
then the permutation representation m : G — Si on the left cosets of H

cannot be injective, since 13 1 k!.
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(2) Let Q@ € Syli3(G) and H = Ng(Q). Thus ti3 = [G : H] > 13. Since
1 < t13]3-5-7% and 13|(t13 — 1), it is easy to see that t;3 = 3-5- 7 is the only
possibility. Thus |H| = 7 - 13. In particular, H is cyclic.

(3) Let B be the Sylow 7—subgroup of H. Thus B is central in H. By Sylow’s
theorem, B is contained in a Sylow 7—subgroup D of G. Since |D| = 72, D is
abelian so D centralizes B. Thus Cg(B) contains both H and D, so its order
is at least 72 - 13. By (1), the order of Cg(B) is exactly 7% - 13 (otherwise its
index in G would be too small).

(4) Note that @ is a Sylow 13—subgroup of Cg(B). The number of Sylow
13—subgroups of Cg(B) divides 49 and is congruent to 1 mod 13, so it equals
1. In other words, Cg(B) has unique Sylow 13—subgroup, namely Q. Thus
@ is normal in Cg(B), i.e. Cg(B) < Ng(Q) = H. This however contradicts
(2), where we showed that |Ng(Q)| =7 - 13.

Cyclic, abelian, and nilpotent numbers

We say that a positive integer n is cyclic (abelian, nilpotent) if every group
of order n is cyclic (resp. abelian, nilpotent). It is our goal now to give an explicit
description of such numbers.

Our main tool is the following

Proposition 1. Let G be a finite group such that every proper subgroup of G is

nilpotent. Then G 1is not simple.

Before we prove this result let us recall some basic facts about nilpotent groups

which are given as problems in 3rd and 4th assignments.

(i) A finite group is nilpotent iff it is a direct product of its Sylow subgroups (i.e.

all Sylow subgroups are normal).

(ii) If @ is a proper subgroup of a p—group P then @ is a proper subgroup of Np(Q)
(i.e. Np(Q) is strictly larger than @). By the above characterization of nilpotent

groups the same remains true for a proper subgroup of a nilpotent group (prove it!).

(iii) Subgroups and quotient groups of nilpotent groups are nilpotent.
Proof of Proposition 1: Consider a group G with all proper subgroups nilpotent

and suppose that it is simple.
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We show that any two maximal subgroups of G have trivial intersection. In fact,
let Hy, Hy be maximal subgroups such that B = H; N Hy has largest possible order.
Suppose that B is not trivial. Thus Ng(B) is a proper subgroup of G, hence it is

contained in a maximal subgroup Hj. Since H; are nilpotent, we see that
H3 2 Ng(B) 2 Nu,(B) 2 B

for ¢ = 1,2 (the first two inclusions are obvious and the third follows from (ii)). It
follows that H3 N H; has more elements than B for : = 1,2. By the definition of B
we see that Hs = H; for i = 1,2, i.e. Hy = H,, a contradiction.

Let M be the set of all maximal subgroups of G. Each non trivial element belongs
to exactly one maximal subgroup. Thus, |G| =1 =), \(|H|—1). The group G
acts on M by conjugation. If H € M, then Ng(H) = H (since the normalizer is a
proper subgroup which contains H). Thus the orbit of H contains |G|/|H| elements.
Let Oy, ...,O; be the orbits of the action of G on M and chose H; € O;. Thus

S

G| =1=Y (IGI/|Hi))(H: = 1) = |G Z(l — [Hi| ™).

i=1
It follows that >_7 (1 —|H;|™') =1—|G|™' < 1. Since 1 — |H;|™' > 1/2 for all i,
we see that s = 1 and |Hy| = |G|. Thus G = H;, a contradiction. O

Exercise. Show that G in the proposition is solvable

Here is another result we need:

Proposition 2. Let P be a p—group of order p"™. If q is a prime divisor of |AutP|
then qlp(p — 1)(p? — 1)...(p" — 1).

Proof: Suppose that g||AutP| for some prime ¢ # p. Thus AutP has an element
f of order q. Let C =< f > be the cyclic subgroup of AutP generated by f and
¢ : C — AutP the inclusion. Consider the semidirect product G = P x4 C. Note
that C' is a Sylow g—subgroup of G. Let t, be the number of Sylow g—subgroups
in G. Since f is nontrivial, C' is not normal in G, i.e. t; > 1. By Sylow’s theorem,

ty|p™ so t, = p' for some 1 < i < n. Moreover, q|(t, — 1) = (p* — 1). It follows that
qp(p —1)(p* = 1)..(p" — 1). O

Remark. A different technique allows to prove a stronger result. Namely, let &

be the Frattini subgroup of P. Then there is a natural homomorphism AutP —»
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AutP/®. Tt turns out that the kernel of this homomorphism os a p—group. Now,
P/® is an abelian group of exponent p and order p* for some 1 <7 < n. Thus P/®
can be thought of as a vector space of dimension ¢ over the field with p—elements.
It follows that AutP/® ~ G L;(F,), so |AutP/®| = pi=D/2(p —1)...(p° — 1).

Exercise. Let G be a nilpotent group, so that G = P, x...x Ps, P; a Sylow subgroup
of G. Show that AutG ~ AutP; x ... Xx AutP,.

Corollary 1. Let G be a nilpotent group of order n = pi*..p%. If q||AutG| then
Q|m1...ms, where m; = pz(pz _ 1)(p:11 _ 1)

Proof: This follows directly from Proposition 2 and the above exercise.

Theorem 2. Let n = pi'py>...pL*, where p1 < ps < ... < py are primes and a; > 0
for all 1.

(1) n is nilpotent iff it has the following property

pit (o — 10 — 1)-.(pj’ — 1) for alli,j (¥)

(2) n is abelian iff n satisfies (*) and 1 < a; < 2 for all i.
(3) n is cyclic iff n satisfies (*) and a; = 1 for all i, i.e. (n,¢(n)) =1, where ¢

1s the Fuler function.

Proof: We first prove that the conditions on n are sufficient. Suppose that that
G is a group of smallest possible order which is not nilpotent and such that |G|
satisfies (*).

Note that if n satisfies (*) then every divisor of n also satisfies (*). Thus every
proper subgroup of G is nilpotent, hence |G| is not simple. Let K be a proper
nontrivial normal subgroup of G. Since K is nilpotent, it has a normal nontrivial
Sylow p—subgroup H for some prime p. Since |G/H| is a proper divisor of |G/,
it satisfies (*) and it is smaller than |G|. It follows that both G/H is nilpotent.
In particular, it has a normal Sylow p—subgroup. The preimage of this subgroup
in G is a normal Sylow p—subgroup P of GG. Let A be a normal subgroup of G
of largest possible order among the normal subgroups which are direct products of
Sylow subgroups of G. If A = G then G is nilpotent and we are done. Suppose
that A is a proper subgroup. Then G/A is nilpotent and (|A|,|G|/|A|) = 1. Let
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m : G — G/A be the projection. Let ¢ be a prime divisor of |G|/|A| and @ a
Sylow g—subgroup of G. Then 7(Q) is a Sylow g—subgroup of G/A, hence it is
normal. By the correspondence theorem, B = A() is a normal subgroup of G. Since
ANQ = {1}, B is a semidirect product B = A x4 Q. By Corollary 1 and the
condition (*), we have ¢ 1 |AutA. Thus ¢ has to be trivial, so B = A x (). This
contradicts our choice of A. Thus G can not exist.

Suppose now that |G| satisfies (*), so G is nilpotent. Let P, be the Sylow
pi—subgroup of G, so G = P; X Pa... X Py by (i). If 1 < a; < 2 for all ¢ then
P; is abelian for all 7, hence G is abelian. If furthermore a; = 1 for all ¢, then P; is
cyclic for all 4 and G is cyclic (why?).

Now we show that the conditions on |G| are necessary. Suppose that n does not
satisfy (*) so there are i, j such that p;|(p; — 1)(p} — 1)...(p;’ — 1). Note that i # j.
Let m = n/p{"p;’. Note that the number p(==1%/2(p; — 1)(p? — 1)...(p;" — 1) is the
order of GL,,;(F,,;). It follows that ]ng has an automorphism f of order p;. But as
a group, H = ]FZ; is a direct product of a; copies of the cyclic group of order p; and
f is an automorphism of H of order p;. Let C' be the cyclic group of order p;-’i and
choose a generator g of C. We have an homomorphism ¢ : C — AutH defined by
#(g9) = f. Consider the group B = H x4 C. It has order p?"p;j. Note that C is
the Sylow p;—subgroup of B, but it is not normal. In fact, if a € H is such that
f(a) # a, then aga™ = (af(a)™')g € C. Thus B is not nilpotent. Let C,, be the
cyclic group of order m. The group G = B x C,, has order n and is not nilpotent.

Suppose now that n satisfies (*) but a; > 3 for some i. Set m = n/p?. We use the
fact that for every prime p there is a nonabelian group of order ps (use the fact the
direct product of two copies of the cyclic group of order p has an automorphism of
order p). Let P be a nonabelian group of order p3 and let C,, be the cyclic group
of order m. Then G = P x C,, has order n and is nonabelian.

Finally, suppose that n satisfies (*) but a; > 1 for some i. Set m = n/p?. The
group G = Cp, x Cp, x C,, is not cyclic. O



