## Homework 3

**Problem 1.** a) For any integer  $r \geq 0$  and positive integers  $n_1|n_2|...|n_k$  define a group  $(r, n_1, ..., n_k) = \mathbb{Z}^r \oplus \mathbb{Z}/n_1 \oplus ... \oplus \mathbb{Z}/n_k$ . We proved that any finitely generated abelian group is isomorphic to a group of the form  $(r, n_1, ..., n_k)$ . Prove that if the groups  $(r, n_1, ..., n_k)$  and  $(s, m_1, ..., m_l)$  are isomorphic then r = s, k = l and  $n_i = m_i$  for all i. The numbers  $n_1, ..., n_k$  are called the **invariant factors** and r is the **rank** ( or torsion-free rank).

b) Find the rank and the invariant factors of the group  $\mathbb{Z}^4/H$ , where H is generated by (-1, -2, -3, -4), (3, 8, 5, 6), (-1, 0, -13, -16), (-3, -4, -13, -6).

**Problem 2.** a) Let F be a field. Show that the group  $G = GL_n(F)$  has a composition series iff F is a finite field. Show the same for the a chief series (or principal series).

- b) Find all composition series of the symmetric group  $S_n$ .
- c) Show that a solvable group has a composition series iff it is finite.

**Problem 3.** a) Prove that if a group G has a composition series then it has a chief series. Is the converse true?

b) Suppose that G has a composition series. Show that every chief factor of G is a direct product of some finite number of copies of a simple group.