Homework 5

Solve problems 3, 7, 8, 9 to section 11.1 and problems 2, 3, 8 to section 9.1. Also solve the following problems:

Problem 1. Let G be a group and H its subgroup of finite index n. Set H' for the derived subgroup of H. Choose a set $g_1, ..., g_n$ of left coset representatives of H in G. For every $g \in G$ there is unique permutation π of $\{1, 2, ..., n\}$ and unique elements h_i such that $gg_i = g_{\pi(i)}h_i$. Set $t(g) = h_1h_2...h_n$.

- a) Show that the coset t(g)H' of H' in H does not depend on the choice of the left coset representatives.
- b) Show that the function $T_{G \to H} = T : G \longrightarrow H/H'$ given by T(g) = t(g)H' is a group homomorphism.
- c) Show that the analogous construction with right cosets gives the same homomorphism.

The homomorphism T defined above is called **transfer** and it is an important tool in group theory. It has the following useful description. Recall that G acts on the left cosets of H in G by left multiplication. The action of $g \in G$ on these cosets of H splits the cosets into some number of orbits (cycles), say m orbits. Suppose that the i-th orbit consists of n_i cosets and let a_iH be one of them. Thus the i-th orbit consists of cosets a_iH , ga_iH , ..., $g^{n_i-1}a_iH$ and we have $g^{n_i}a_iH = a_iH$, i.e. $a_i^{-1}g^{n_i}a_i \in H$. Set $k_i = a_i^{-1}g^{n_i}a_i$.

- d) Show that $T(g) = k_1 k_2 ... k_m H'$.
- e) Show that if K is a subgroup of finite index in H then $T_{H \to K} T_{G \to H} = T_{G \to K}$.
- f) Show that if g is in the center of G then $T(g) = g^n H'$ (note that $g^n \in H$).

The following problem illustrates the usefulness of the transfer.

Problem 2. Let G be a finite group and P its Sylow p-subgroup.

a) Suppose that a, b are in the center of P and that there is $g \in G$ such that $gag^{-1} = b$. Prove that there is $u \in G$ such that $uPu^{-1} = P$ (i.e. u normalizes

- P) and $uau^{-1} = b$. Hint: Show first that both P and $g^{-1}Pg$ are contained in the centralizer of a.
- b) Suppose further that P is in the center of its normalizer N in G (in particular, P is abelian). Show that if $p \in P$ and $gpg^{-1} \in P$ for some $g \in G$ then $gpg^{-1} = p$.
- c) Under the assumptions of b) show that the transfer T from G to P maps any $p \in P$ to p^n , where n is the index of P in G. Conclude that T is surjective.
- d) Deduce from c) that G has a normal subgroup H of order n such that G = PH.
- e) Show that if p is the smallest prime divisor of the order of G and P is cyclic then the assumptions of b) are satisfied, so G has a normal subgroup H such that $H \cap P = 1$ and G = HP. In particular, G is not simple.
- f) Show that if all Sylow subgroups of a finite group G are cyclic then G is solvable.

Remark. In fact much more can be proved (and it is not that hard): G has two elements a, b of orders m, n respectively such that $b^{-1}ab = a^r$ for some r such that $m|(r^n-1)$ and (m, n(r-1)) = 1. Moreover G has order mn, $G' = \langle a \rangle$ and G/G' is cyclic of order n. It is easy to see that every m, n, r as above correspond to a unique group with cyclic Sylow subgroups. In particular, this gives a full classification of groups of order N for any square-free N.

Problem 3. Let H be a p-group which acts on an abelian p-group N. Suppose that $H^1(H,N)=0$. Prove that $H^1(K,N)=0=H^2(K,N)$ for every subgroup K of H