1. 5-FUNCTORS

Let C, D be abelian categories. Recall that for any abelian category
A we have the category SES(A) of short exact sequences in A and three
functors T; : SES(A) — A, i = 1,2, 3, defined by

T;(0 — A1 — Ay — A3 — 0) = A;.

Inspired by the results of the previous section we make the following

definitions

Definition 1. A é-functor form C to D is a collection of additive
functors F™ : € — D, n € Z, and natural transformations §, : F™ o
T3 — F™"' o Ty of functors from SES(C) to D such that for every
short exact sequence 0 — A — B —> C — 0 in C the sequence

On—1

. — FPYC) 222 FR(A) — F(B) — F™(C) 22 FrH(A) — ...

is a complex. If this complex is exact for every short exact sequence in

C then the §-functor is called exact.

Definition 2. A é-functor is called cohomological (homological) if
F* =0 for alln <0 (resp. for alln >0).

Remark. For a homological é-functor it is customary to write F;, for
F~" etc.

Definition 3. A cohomological -functor is called effaceable if for any
object X of C there is a monomorphismu : X — Y such that F™(u) =0
for all n > 0. A homological é-functor is called effaceable if for any



object X of C there is an epimorphismu : Y — X such that F"(u) =0

for allm < 0. Any such u is called an effacing morphism.

Definition 4. A cohomological (or homological) é-functor is called uni-

versal, if it is ezact and effaceable.

Theorem 1. Let (F™) be a universal cohomological (homological) 6-
functor and (G™) any 6-functor. Any natural transfromation o : FO —
G of functors (resp. a : G° — F°) uniquely extends to a natural

transformation of §-functors.

Remark. A natural transformation of §-functors is a collection of nat-
ural transformations «, : F* — G", n € Z, such that for every k
and every short exact sequence 0 — A — B — C — 0 in C the

following diagram commutes:

1) FR1(0) 22 Pk (a)
o

G*1(C) — G*(A)

Proof: We give a proof for cohomological d-functors and leave the case
of homological §-functors as an exercise.

Uniqueness. Suppose we have two natural transformations (a;,), (8r)
such that ag = a = Gy. Clearly a,, = 0 = 3, for all n < 0, since F* =0
for such n. We show that a,, = 3, by induction on n. For n = 0 it is
our assumption. Suppose then that «p = 8y for all £ < n. Let X be an
object of C and u : X — Y an effacing monomorphism. Thus we have

an exact sequence
0—X-5Y - 2Z—0

where Z = coker u, which leads to the following commutative diagram



On_1 F"(u)
iz) S ) L )

an—1=PFn-1 l Qn ll Bn
5 G (u)

n—

G1(z2) = Gn(X) —= G™(Y)
with the top row exact. Note that a,d,_1 = dp_10n—1 = 0n_10n_1 =
Brnbn—1. Since F™(u) = 0, the morphism §,_1 in the top row is an

epimorphism, hence the equality a,0,_1 = B,0,—1 implies that a,, = 3,.

Ezistence. Suppose that we have already constructed natural transfor-
mations oy, for k& < n such that the diagrams (1) commute for k < n.
Let X be an object of € and v : X — Y an effacing monomorphism.

Thus we have an exact sequence
0—-X-5Y-H2Z—0

where Z = coker u, which leads to the following commutative diagram

anl - 677,—1
Py L gy L Erx)

On—1 l Qan—1 l

G™1(5) On—
@) =@l (2) T Gh(X)
with the top row exact. Note that (6,—10,—1)F" 1(j) = ap_1G™ 1(§)dp—1 =
0 (since G*1(j)6,_1 = 0). Tt follows that there exists unique morphism

a" such that the diagram

Frel(K) 22 Fr(x)

e

(Snfl

G"HK) — G"(X)

commutes. If the natural transformation «, exists, then we must have
a, = o by uniqueness. In particular, a® should not depend on the
effacing morphism u. We will show that this is indeed true and that
setting a, = o indeed defines a natural transformation of functors for

which the diagrams (1) commute for k = n.



Suppose that we are given a commutative diagram

J

0 X —>Yv A 0
oo
0 A—>B—>C 0

with exact rows and u, w effacing monomorphisms. This leads to the

following cube

On—
Frl(2) 1 F(X)
Qn—1 X
6',171
G 1(2) G"(X)
Fr=1(g) F™(f)
G"1(g) s G™(f)
F*=1(0) — F"(A)
Jn—l \
G 1(0C) G"(A)

in which all faces except perhaps the right face commute and in which
the top 6,1 is an epimorphism. We claim that it follows that the right
face commutes too, i.e. that G"(f)a* = a“F"(f). In fact, since the
top d,—1 is an epimorphism, it is enough to show that G™(f)a"d,—1 =

o F™(f)0p—1. The commutativity of the faces gives
Gn(f)au(sn—l = Gn(f)(;n—lan—l = 5n—1Gn_1(g)an—1 =

= nflanlen_l(g) =a" nlen_l(g) = aan(f)én*h

which confirms our claim.

Suppose now that we have two short exact sequences

0 x-Sy 237250



and

0—A4A-“By0—0

with u, w effacing monomorphisms and a morphism f : X — A. We
can not apply the previous paragraph directly since there is no reason in
general for f to extend to a morphism of short exact sequences. Fortu-
nately, there is a way around this problem. We construct a third exact

sequence:

0— X2 Axy — W —0
(where W is a cokernel of u x wf). The following diagram commutes

u

0— =X A )

I

00— X —YXB—W —=0

oo

w 2

0 A B C 0

where pg, py are projections and the vertical arrows from W are uniquely
determined by the universal property of a cokernel. Since F™ are ad-
ditive, F™(u x wf) = F™(u) x F*(w)F"(f) = 0x 0 = 0 for n > 0.
Thus u X wf is an effacing monomorphism. Applying the previous para-
graph to the top two and bottom two exact sequences yields the equal-
ities G"(id)a***f = a*F"(id) and G™(f)a***/ = a“F"™(f). Thus
a» %l = o* and G*(f)a* = a”F"(f). In particular, we may take
A = X and f = id and we see that o* = o". This proves independence
of the effacing monomorphism and allows us to define o, = a*. Since
for any morphism f we have G™(f)a, = a,F™(f), we see that a, is a
natural transformation from F™ to G™.

It remains to show that the diagrams (1) commute for £ = n. So we
start with an exact sequence 0 — A s B —5C — 0in C. Note
that if ¢ is an effacing monomorphism then the corresponding diagram
(1) commutes for k = n by definition of ;. Let u : B — Y be an

effacing monomorphism. Note that ui : A — Y is also an effacing



monomorphism. We have a commutative diagram

0 A B C 0
Nt
0 A—2sy A 0

which leads to the following cube

5n71

o) Fn(A)
Qan—1 x
6n71
G"1(0) G"(A)
G (w) G (id)
6n—1
FY(2) Fm(A)
Qan—1 \\\\3i\
571.71
Gr1(Z) G (A)

in which all faces except possibly the top one commute. Our proof will
be completed if we show that the top face commutes as well. But this

is quite simple at this point:
andn—1 = G"(id)anbn—1 = @, F"(id)dp—1 = andn_anfl(w) =
= n-10n1 F" 7 (w) = 6,1G" (W) an—1 = G™(id)dn—10m-1 = Sp_10p_1. O

Corollary 1. A universal cohomological (or homological) §-functor (F™)
is uniquely determined by F°. More precisely, if (G™) is another univer-
sal cohomological (or homological) 6-functor and o : FO —s G (resp.
a: G — F0)is an equivalence of functors then it uniquely extends to

an equivalence (ay,) of d-functors.

Proof: Let 3 be the inverse of a.. There are unique extensions (o) of
a and (5,) of B, as given by Theorem 1. Now 7, = a8, is an extension

of a8 = id. Since identity «y,, = id is also an extension , the uniqueness in



Theorem 1 implies that v, = a,8, = id for all n. Similarly, 8,a, = id
for all n. O

The last lemma indicates that a universal §-functor can be recovered
from FO. It is natural to ask for a way to compute the é-functor from
FO. A related question is what functors F' : @ — D are equal to F°
for some universal é-functor. The following simple observation gives a

necessary condition:

Proposition 1. If (F™) is a universal cohomological (homological) 6-

functor then FO is left exact (resp. right exact).

Proof: If 0 — A — B — C — 0 is a short exact sequence in C

then we have the long exact sequence
.. — F7(C) — F°(A) — F°(B) — F°(C) — F'(4) — ...

If (F™) is cohomological then F~1(C) = 0 and we get left exactness, if
(F™) is homological then F1(A) = 0 and we get right exactness. O
To emphasize the fact that a universal §-functor is uniquely deter-

mined by F? we make the following definition:

Definition 5. Given a universal cohomological §-functor (F™) we write
F' = R'F, where F = F9, and call R'F the i—th right derived
functor of F. Given a universal homological §-functor (F™) we write
F' = L7'F, where F = F°, and call L'F the i—th left derived func-
tor of F'.

Our goal is to show that under some mild conditions the necessary
condition from Proposition 1 are also sufficient for a functor to be F© of

some universal §-functor.

Definition 6. Let (F™) be a universal cohomological (homological) 6-
functor. An object A is called acyclic (for the d-functor) if F"(A) =0
for alln >0 (resp. alln <0).



We are now going to concentrate on cohomological functors but in
parenthesis we will put remarks about analogous statements for ho-
mological d-functors. Note that if f : X — Y is a monomorphism
(epimorphism) and Y is acyclic (X is acyclic) then f is an effacing
monomorphism (epimorphism). Moreover, suppose that 0 — A —»
B — C — 0 is a short exact sequence with B acyclic. In the long

exact sequence
.. — FF1(C) — F*¥(4) — F*¥(B) — F¥(C) — FF1(4) — ...

we have F'(B) = 0 for all i > 0 (i < 0 if the -functor is homological).
It follows that the maps & : F*(C) — F**1(A) are isomorphisms for
k > 0. This observation often allows to reduce stetements about F™
to statements about F” ! and is called dimension shifting. A more

refined version of this ideas is the following fundamental

Theorem 2. Let (F™) be a cohomological universal §-functor and set

F = F°. Given an ezact sequence
d d d
0—)AL)M0—O)M1—1)M2—2)...

with M; acyclic for all i, the k—th cohomology of the complex

F(do) F(dy) F(dy)

(2) 00— F(Mo) F(Ml) F(Mg)

is isomorphic to F*(A) for all k > 0.
Similarly, let (F™) be a homological universal §-functor and set F =

FO. Given an exact sequence
0+— A<+— My<+— My +— My +— ...
with M; acyclic for all i, the k—th cohomology of the complex
0 «— F(My) «— F(My) «— F(Ma) +— ...

is isomorphic to F~*(A) for all k > 0.

Proof: We will give a proof for cohomological functors. We proceed

by induction on k.



k = 0: Since the functor F is left exact, the sequence
0 — F(A) — F(My) — F(M)

is exact, so F(A) is isomorphic to the kernel F(dp), i.e. to H? of the

complex 2.

k=1: Let A; be the image of dy (which is canonically isomorphic to

the cokernel of f), so we have the following exact sequences:
0— A— My -5 4, — 0
and
f dl d2 d3
0— A — My — My — M3 — ...

The long exact sequence associated to the first of these sequences is
0 — F(A) — F(My) — F(A;) — FY(4) — F'(Mp) =0 — ...

Thus F'(A) is a cokernel of the morphism F(d) : F(My) — F(A;).

On the other hand, left exactness of F' implies that the sequence

is exact, so F((A1) is a kernel of F(d;). Thus H'! of the complex 2 is
isomorphic to a cokernel of F(d). Thus F!(A) and H! are canonically

isomorphic.

inductive step: Suppose that the result holds for £ < n, where n > 2.

The long exact sequence associated to
0— A— My - A — 0

shows that F(A) is isomorphic to F"~!(A;) (dimension shifting). Since

the sequence
0— Ay L My 45 My 2 My B

is exact, we may use the iductive assumption and conclude that F"~1( A1)
is isomorphic to H®! of the complex

F(dy) F(d2) F(d3)

F(M>) F(Ms3)



which is the same as H™ of the complex 2 (since n > 2). O
Theorem 2 suggests a method to recover F™ from FO. The only
problem is that we need to use acyclic objects, which are defined by using

the functors F™. Fortunately, we have the following crucial observation

Proposition 2. Injective (projective) objects are acyclic for any uni-

versal cohomological (homological) é-functor.

Proof: We give a proof for cohomological §-functors. Let I be an
injective object and u : I — Y an effacing monomorphism. The in-
jectivity of I implies the existence of a morphism w : ¥ — I such
that wu = id. Thus, for n > 0, we have id = F"(id) = F"(wu) =
F"(w)F™(u) = F™(w)0 = 0, hence F™(I) = 0 (an object is 0 iff 0 = id).
O



