Homework 1

Problem 1. Let \mathcal{C} , \mathcal{D} be categories. Two functors $F:\mathcal{C}\longrightarrow\mathcal{D}$, $G:\mathcal{D}\longrightarrow\mathcal{C}$ are called **adjoint** if the following functors $T_F, T_G:\mathcal{C}^o\times\mathcal{D}\longrightarrow SET$ are naturally equivalent:

$$T_F(X,Y) = Mor_{\mathcal{D}}(F(X),Y)$$

 $T_G(X,Y) = Mor_{\mathcal{C}}(X,G(Y))$

(it is clear how these functors are defined on morphisms). In other words, for every $X \in Ob\mathcal{C}$ and $Y \in Ob\mathcal{D}$ there is a bijection $f_{X,Y} : Mor_{\mathcal{D}}(F(X),Y) \longrightarrow Mor_{\mathcal{C}}(X,G(Y))$ and these bijections are compatible with composition of morphisms. We say that F is **left adjoint** to G and G is **right adjoint** to F.

- a) Show that if a right adjoint to F exists, then it is unique up to natural equivalence; same for left adjoint to G.
- b) Let G be the forgetful functor from the category of abelian groups to the category of sets. Show that it has a left adjoint functor. Do the same for the forgetful functors from abelian groups to groups and from topological spaces to sets.
- c) Prove that the forgetful functor from abelian groups to groups does not have a right adjoint.
- d) Prove that if F, G are adjoint functors (F is left adjoint to G) then F preserves colimits and G preserves limits (so, for example, if $T: \mathbb{S} \longrightarrow \mathbb{C}$ is a functor from a small category and colimT exists, then colimFT = F(colimT)). This and b) should explain why the limits in the categories of sets, groups and topological spaces look the same. Conclude that if \mathbb{C} , \mathbb{D} are abelian categories then F is right exact and G is left exact.
- e) Let S be a small category and C be a category such that colim F exists for every functor $F: S \longrightarrow \mathbb{C}$. One can define a functor colim from the category of functors $Fun(S,\mathbb{C})$ to C by sending F to colim F (some choices need to be made here). There is also a functor h from C to $Fun(S,\mathbb{C})$ which takes an object X to the constant functor h_X . Show that colim is left adjoint to h. Formulate and prove similar result for lim.

Problem 2. Recall that a functor $F: \mathcal{C} \longrightarrow SET$ is called representable if it is naturally equivalent to a functor $R_X = Mor(X, -)$ for some object X (so $R_X(Y) = Mor(X, Y)$ and $R_X(f)$ maps $g \in Mor(X, Y)$ to $fg \in Mor(X, Z)$ for any $f \in Mor(Y, Z)$). Let $G: \mathcal{C} \longrightarrow SET$ be any functor (not necessarily representable). If (η_Y) is a natural transformation from R_X to G (so $\eta_Y: R_X(Y) \longrightarrow G(Y)$), we can assign to it an element $\eta_X(id_X)$ of G(X). Show that this defines a bijection between natural transformations from R_X to G and G(X). Conclude that R_X and R_Y are naturally equivalent iff X and Y are isomorphic. Formulate and prove similar result for Mor(-,X). This result is called **Yoneda's Lemma**.

Problem 3. a) Let $F: \mathcal{C} \longrightarrow \mathcal{D}$ be a functor between additive categories. Prove that the following conditions are equivalent:

- 1. F is additive
- 2. F preserves products of any two objects
- b) Suppose that in a) the categories are abelian. Prove that if F is left exact or right exact then it is additive.

Problem 4. a) For a morphism $f: X \longrightarrow Y$ define d(f) = X (domain of f) and r(f) = Y. Let $F: S \longrightarrow \mathbb{C}$ be a functor from a small category S. Suppose that the product $A = \prod_X F(X)$ exists (product over all objects of S) and also that the product $B = \prod_X F(r(f))$ exists (product over all morphisms of S). For every X we have the projection $p_X: A \longrightarrow F(X)$. For every f we define two morphisms i_f , j_f from A to F(r(f)) by $i_f = p_{r(f)}$ and $j_f = F(f)p_{d(f)}$. By the definition of product, there exist morphisms i, j from A to B such that $\pi_f i = i_f$ and $\pi_f j = j_f$, where π_f is the projection of B to F(r(f)). Prove that $\lim F$ is the same as the equalizer of i, j. Conclude that if equalizers and products of two objects (all objects) exists in C then all finite limits (resp. all limits) exist in C. Conclude that all finite limits exist in an abelian category (a limit is called finite if the objects of S form a finite set). Formulate and prove similar result for colimits.

b) Use a) to conclude that a left (right) exact functor between abelian categories preserves all finite limits (colimits).

Remark. Let S be a category with two objects a, b and two morphisms u, v from a to b (plus the identity morphisms). If C is a category and we have two morphisms $f, g: X \longrightarrow Y$ in C, then we may define a funcor $F: S \longrightarrow C$ by F(a) = X, F(b) = Y, F(u) = f, F(v) = g. The equalizer of f, g is by definition the limit lim F, and the coequalizer is the colimit colim F.