Homework 1

due on Wednesday, September 25

Study chapter 7 of Dummit and Foote. Solve problems 33 and 34 to 7.4.

Problem 1. An element a of a ring R is called **nilpotent** if $a^m = 0$ for some m > 0.

- a) Prove that in a commutative ring R the set N of all nilpotent elements of R is an ideal. This ideal is called the **nilradical** of R. Prove that 0 is the only nilpotent element of R/N.
- b) Let R be a commutative ring and let $a_1, ..., a_n \in R$ be nilpotent. Set I for the ideal $\langle a_1, ..., a_n \rangle$ generated by $a_1, ..., a_n$. Prove that there is a positive integer N such that $x_1x_2...x_N = 0$ for any $x_1, ..., x_N$ in I (i.e. that $I^N = 0$).
- c) Prove that the set of all nilpotent elements in the ring $M_2(\mathbb{R})$ is not an ideal.
- d) Prove that if p is a prime and m > 0 then every element of $\mathbb{Z}/p^m\mathbb{Z}$ is either nilpotent or invertible.
- e) Find the nilradical of $\mathbb{Z}/36\mathbb{Z}$ (by correspondence theorem, it is equal to $n\mathbb{Z}/36\mathbb{Z}$ for some n).

Problem 2. Let R be a commutative ring. For an ideal I of R define

$$\sqrt{I} = \{x \in R : x^n \in I \text{ for some } n > 0\}.$$

- a) Prove that \sqrt{I} is an ideal. It is called the **radical** of I.
- b) Prove that $\sqrt{\{0\}}$ is the nilradical of R.
- c) Consider a surjective homomorphism $f: R \longrightarrow S$. Prove that in the correspondence theorem the nilradical of S corresponds to $\sqrt{\ker f}$.
- d) Prove that R/\sqrt{I} has trivial nilradical.
- **Problem 3.** A subset S of a commutative ring is called **multiplicative** if $0 \notin S$ and for any $a, b \in S$ also $ab \in S$.
- a) Let I be an ideal of a commutative unital ring R. Prove that I is a prime ideal iff R-I is multiplicative.

- b) Let S be a multiplicative subset of a comutative unital ring R. Consider the set T of all ideals of R which are disjoint with S. Prove that this set contains maximal elements (with respect to inclusion; this requires Zorn's Lemma and is very similar to the proof that every ring has a maximal ideal). Prove that every maximal element of T is a prime ideal.
- c) Use b) to prove that if $a \in R$ is not nilpotent then there is a prime ideal in R which does not contain a.
- d) Prove that the nilradical of a commutative unital ring R coincides with the intersection of all prime ideals.

Problem 4. Let $f: R \longrightarrow S$ be a homomorphism of commutative unital rings.

- a) Prove that if P is a prime ideal of S then $f^{-1}(P)$ is a prime ideal of R. Is this true for non-commutative rings?
- b) Find an example when P is a maximal ideal of S but $f^{-1}(P)$ is not maximal in R.
- c) Prove that if f is onto and Q is a prime ideal of R such that $\ker f \subseteq Q$ then f(Q) is a prime ideal of S. Is this true for non-commutative rings?
- d) Suppose that f is surjective. Prove that if P is a maximal ideal of S then $f^{-1}(P)$ is maximal in R. Prove that if Q is a maximal ideal of R then f(Q) is either S or it is a maximal ideal of S. Show by example that a similar statement for prime ideals is false.
- e) Find all prime ideals of $\mathbb{Z}/36\mathbb{Z}$.

Problem 5. Let R be a ring and n a positive integer. Prove that if I is an ideal of the ring $M_n(R)$ then $I = M_n(J)$ for some ideal J of R. Prove that I is maximal iff J is maximal. Prove that I is prime iff J is prime. Conclude that if R is simple (prime) then so is $M_n(R)$.

Problem 6. Let I be a prime ideal of R. Prove that if J, K are left ideals of R such that $JK \subseteq I$ then either $Jjj \subseteq I$ or $K \subseteq I$. Hint: Consider the set of all a such that $aK \subseteq I$ and prove that it is an ideal containing J.