Homework 2

due on Friday, October 11

Problem 1. Let R be a unique factorization domain. Let a, b, c be elements of R. Prove the following:

- 1. If c|ab and gcd(a, c) = 1 then c|b.
- 2. If a|c, b|c, and gcd(a, b) = 1 then ab|c.
- 3. If gcd(a, c) = 1 = gcd(b, c) then gcd(ab, c) = 1.
- 4. If c|a and c|b then $c \operatorname{gcd}(a/c, b/c) = \operatorname{gcd}(a, b)$.
- 5. If m, n are positive integers then gcd(a, b) = 1 iff $gcd(a^m, b^n) = 1$.
- 6. If n is a positive integer and $a^n | b^n$ then a | b.
- 7. gcd(a, b)lcm(a, b) is associated to ab.
- 8. gcd(a, b, c) = gcd(a, gcd(b, c)) and lcm(a, b, c) = lcm(a, lcm(b, c)).

Problem 2. Prove that R_d is Euclidean for d = 3, 6, 29. Hint: Show that the absolute value of the norm can be used as Euclidean norm.

Remark. It can be proved that the absolute value of the norm is an Euclidean function on R_d iff d = 2, 3, 5, 6, 7, 11, 13, 17, 21, 29, 33, 37, 41, 57, 73, 76. On the other hand, asuming the Extended Riemann Hypothesis, it was proved that for d > 0 the ring R_d is a UFD iff it is Euclidean. It is a long standing conjecture that there are infinitely many d > 0 for which R_d is a PID. It is known that R_d is a PID iff the absolute value of the norm is a Dedekind-Hasse function on R_d .

Problem 3. Consider the ring $R_{-3} = R = \mathbb{Z}[\omega] = \{a + b\omega : a, b \in \mathbb{Z}\}$ of Eisenstein integers, where $\omega = (-1 + \sqrt{-3})/2$ (note that the ω here is slightly different than the one used in class, but the ring is the same). Observe that that $\omega^2 + \omega + 1 = 0$ (so $\omega^3 = 1$).

a) Let p be an odd prime such that -3 is not a square modulo p. Prove that if a, b are integers such that $p|a^2-ab+b^2$ then p|a and p|b. Hint. $(2a-b)^2+3b^2=4(a^2-ab+b^2)$.

b) Prove that if a, b are integers such that $2|a^2 - ab + b^2$ then 2|a and 2|b.

c) Use a), b) to conclude that if p = 2 or p is an odd prime such that -3 is not a square modulo p then pR is a prime ideal. Conclude that pR is maximal.

d) Suppose now p is an odd prime such that -3 is a square modulo p. Prove that pR is not a prime ideal. Conclude that p is not irreducible and $p = a^2 - ab + b^2$ for some integers a, b. Show that the ideal pR is a product of two maximal ideals which are different iff $p \neq 3$. Furthermore, show that if $p \neq 3$ then $p \equiv 1 \pmod{3}$.

e) Prove that every element of R is associated to an element of the form $a + b\omega$ with both a, b non-negative and at least one of a, b even.

f) Suppose now that $p \equiv 1 \pmod{3}$. Prove that -3 is a square modulo p. (Hint: There is an integer whose (multiplicative) order is 3 modulo p). Conclude that -3 is a square modulo an odd prime p > 3 iff p is a square modulo 3. This is a special case of quadratic reciprocity.

g) Prove that a natural number n is of the form $a^2 + 3b^2$ iff every prime divisor of n which is $\equiv 2 \pmod{3}$ appears in n to an even power.

Problem 4. Let I be an ideal of the ring R. Define I[x] as the subset of R[x] which consists of all the polynomials in R[x] whose all coefficients belong to I. Prove that I[x] is an ideal of R[x] and that R[x]/I[x] is naturally isomorphic to the polynomial ring (R/I)[x].

Problem 5. Let R be a commutative ring and let R[x] be the ring of polynomials in x with coefficients in R. Let $f = f_0 + f_1 x + ... + f_n x^n \in R[x]$. Prove that

- a) f is invertible iff $f_0 \in \mathbb{R}^{\times}$ and $f_1, ..., f_n$ are nilpotent.
- b) f is nilpotent iff $f_0, ..., f_n$ are nilpotent.
- c) f is a zero divisor iff af = 0 for some $0 \neq a \in R$.

d) Let P be a prime ideal of R and $f, g \in R[x]$. Prove that all coefficients of fg belong to P iff either all coefficients of f or all coefficients of g belong to P.

e) If f belongs to every maxiaml ideal of R[x] then f is nilpotent.

Problem 6. Let R be an integral domain.

a) Let $f, g \in R[x]$ be such that $fg = cx^n$ for some n and some $c \in R$, $c \neq 0$. Prove that there exist elements $a, b \in R$ and $m \leq n$ such that $f = ax^m$ and $g = bx^{n-m}$ and ab = c.

b) Suppose that $f = f_0 + f_1x + ... + f_nx^n \in R[x]$. Suppose that there is a prime ideal P of R such that $f_n \notin P$, $f_0, ..., f_{n-1} \in P$ and $f_0 \notin P^2$. Prove that if f = ghfor some $g, h \in R[x]$ then one of g, h is constant. Conclude that if in addition f is monic then it is irreducible in R[x]. This result is known as **Eisenstein criterion**. Hint: Assume that f = gh and both g, h have positive degree. Pass to the ring (R/P)[x] and apply a) to show that constant terms of g and h belong to P. Derive contradiction.

c) Prove that the polynomial $2x^{10} + 21x^8 - 35x^2 + 14$ is irreducible in $\mathbb{Z}[x]$. Hint: Apply Eisenstein criterion with appropriate prime ideal P.

Problem 7. Find a greatest common divisor d(x) of the polynomials $p(x) = x^3 + 4x^2 + x - 6$ and $q(x) = x^5 - 6x + 5$ in the ring $\mathbb{Q}[x]$ and find $a(x), b(x) \in \mathbb{Q}[x]$ such that d(x) = a(x)p(x) + b(x)q(x).

Problem 8. Let $K \subseteq L$ be fields. Suppose that $f, g \in K[x]$ and f|g in the ring L[x]. Prove that f|g in the ring K[x].