Homework 1

due on Friday, September 8

Study chapter 7 of Dummit and Foote. Solve problems 33 and 34 to 7.4.

Problem 1. An element a of a ring R is called nilpotent if $a^{m}=0$ for some $m>0$.
a) Prove that in a commutative ring R the set N of all nilpotent elements of R is an ideal. This ideal is called the nilradical of R. Prove that 0 is the only nilpotent element of R / N.
b) Let R be a commutative ring and let $a_{1}, \ldots, a_{n} \in R$ be nilpotent. Set I for the ideal $<a_{1}, \ldots, a_{n}>$ generated by a_{1}, \ldots, a_{n}. Prove that there is a positive integer N such that $x_{1} x_{2} \ldots x_{N}=0$ for any x_{1}, \ldots, x_{N} in I (i.e. that $I^{N}=0$).
c) Prove that the set of all nilpotent elements in the ring $M_{2}(\mathbb{R})$ is not an ideal.
d) Prove that if p is a prime and $m>0$ then every element of $\mathbb{Z} / p^{m} \mathbb{Z}$ is either nilpotent or invertible.
e) Find the nilradical of $\mathbb{Z} / 36 \mathbb{Z}$ (by correspondence theorem, it is equal to $n \mathbb{Z} / 36 \mathbb{Z}$ for some n).

Problem 2. Let R be a commutative ring. For an ideal I of R define

$$
\sqrt{I}=\left\{x \in R: x^{n} \in I \text { for some } n>0\right\} .
$$

a) Prove that \sqrt{I} is an ideal. It is called the radical of I.
b) Prove that $\sqrt{\{0\}}$ is the nilradical of R.
c) Consider a surjective homomorphism $f: R \longrightarrow S$. Prove that in the correspondence theorem the nilradical of S corresponds to $\sqrt{\operatorname{ker} f}$.
d) Prove that R / \sqrt{I} has trivial nilradical.

Problem 3. A subset S of a commutative ring is called multiplicative if $0 \notin S$ and for any $a, b \in S$ also $a b \in S$. .
a) Let I be an ideal of a commutatuve unital ring R. Prove that I is a prime ideal iff $R-I$ is multiplicative.
b) Let S be a multiplicative subset of a comutative unital ring R. Consider the set T of all ideals of R which are disjoint with S. Prove that this set contains maximal elements (with respect to inclusion; this requires Zorn's Lemma and is very similar to the proof that every ring has a maximal ideal). Prove that every maximal element of T is a prime ideal.
c) Use b) to prove that if $a \in R$ is not nilpotent then there is a prime ideal in R which does not contain a.
d) Prove that the nilradical of a commutative unital ring R coincides with the intersection of all prime ideals.

Problem 4. Let $f: R \longrightarrow S$ be a homomorphism of commutative unital rings.
a) Prove that if P is a prime ideal of S then $f^{-1}(P)$ is a prime ideal of R. Is this true for non-commutative rings?
b) Find an example when P is a maximal ideal of S but $f^{-1}(P)$ is not maximal in R.
c) Prove that if f is onto and Q is a prime ideal of R such that ker $f \subseteq Q$ then $f(Q)$ is a prime ideal of S. Is this true for non-commutative rings?
d) Suppose that f is surjective. Prove that if P is a maximal ideal of S then $f^{-1}(P)$ is maximal in R. Prove that if Q is a maximal ideal of R then $f(Q)$ is either S or it is a maximal ideal of S. Show by example that a similar statement for prime ideals is false.
e) Find all prime ideals of $\mathbb{Z} / 36 \mathbb{Z}$.

Problem 5. Let R be a ring and n a positive integer. Prove that if I is an ideal of the ring $\mathrm{M}_{n}(R)$ then $I=\mathrm{M}_{n}(J)$ for some ideal J of R. Prove that I is maximal iff J is maximal. Prove that I is prime iff J is prime. Conclude that if R is simple (prime) then so is $\mathrm{M}_{n}(R)$.

Problem 6. Let I be a prime ideal of R. Prove that if J, K are left ideals of R such that $J K \subseteq I$ then either $J \subseteq I$ or $K \subseteq I$. Hint: Consider the set of all a such that $a K \subseteq I$ and prove that it is an ideal containing J.

