Homework 2

due on Monday, September 18

Study Chapters 7 and 8 of Dummit and Foote. Solve problem 26 to 7.1, problem 39 to 7.4 and the following problems.

Problem 1. Let R be a unique factorization domain. Let a, b, c be non-zero elements of R. Prove the following:

1. If $c \mid a b$ and $\operatorname{gcd}(a, c)=1$ then $c \mid b$.
2. If $a|c, b| c$, and $\operatorname{gcd}(a, b)=1$ then $a b \mid c$.
3. If $\operatorname{gcd}(a, c)=1=\operatorname{gcd}(b, c)$ then $\operatorname{gcd}(a b, c)=1$.
4. If $c \mid a$ and $c \mid b$ then $c \operatorname{gcd}(a / c, b / c)=\operatorname{gcd}(a, b)$.
5. If m, n are positive integers then $\operatorname{gcd}(a, b)=1$ iff $\operatorname{gcd}\left(a^{m}, b^{n}\right)=1$.
6. If n is a positive integer and $a^{n} \mid b^{n}$ then $a \mid b$.
7. $\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)$ is associated to $a b$.
8. $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$ and $\operatorname{lcm}(a, b, c)=\operatorname{lcm}(a, \operatorname{lcm}(b, c))$.

Problem 2. Let I be an ideal of the ring R. Define $I[x]$ as the subset of $R[x]$ which consists of all the polynomials in $R[x]$ whose all coefficients belong to I. Prove that $I[x]$ is an ideal of $R[x]$ and that $R[x] / I[x]$ is naturally isomorphic to the polynomial ring $(R / I)[x]$.

Problem 3. Let R be a commutative ring and let $R[x]$ be the ring of polynomials in x with coefficients in R. Let $f=f_{0}+f_{1} x+\ldots+f_{n} x^{n} \in R[x]$. Prove that
a) f is invertible iff $f_{0} \in R^{\times}$and f_{1}, \ldots, f_{n} are nilpotent.
b) f is nilpotent iff f_{0}, \ldots, f_{n} are nilpotent.
c) f is a zero divisor iff $a f=0$ for some $0 \neq a \in R$.
d) Let P be a prime ideal of R and $f, g \in R[x]$. Prove that all coefficients of $f g$ belong to P iff either all coefficients of f or all coefficients of g belong to P.
e) If f belongs to every maxiaml ideal of $R[x]$ then f is nilpotent.

Problem 4. Ler R be an integral domain.
a) Let $f, g \in R[x]$ be such that $f g=c x^{n}$ for some n and some $c \in R, c \neq 0$. Prove that there exist elements $a, b \in R$ and $m \leq n$ such that $f=a x^{m}$ and $g=b x^{n-m}$ and $a b=c$.
b) Suppose that $f=f_{0}+f_{1} x+\ldots+f_{n} x^{n} \in R[x]$. Suppose that there is a prime ideal P of R such that $f_{n} \notin P, f_{0}, \ldots, f_{n-1} \in P$ and $f_{0} \notin P^{2}$. Prove that if $f=g h$ for some $g, h \in R[x]$ then one of g, h is constant. Conclude that if in addition f is monic then it is irreducible in $R[x]$. This result is known as Eisenstein criterion. Hint: Assume that $f=g h$ and both g, h have positive degree. Pass to the ring $(R / P)[x]$ and apply a) to show that constant terms of g and h belong to P. Derive contradiction.
c) Prove that the polynomial $2 x^{10}+21 x^{8}-35 x^{2}+14$ is irreducible in $\mathbb{Z}[x]$. Hint: Apply Eisenstein criterion with appropriate prime ideal P.

Problem 5. Find a greatest common divisor $d(x)$ of the polynomials $p(x)=x^{3}+$ $4 x^{2}+x-6$ and $q(x)=x^{5}-6 x+5$ in the ring $\mathbb{Q}[x]$ and find $a(x), b(x) \in \mathbb{Q}[x]$ such that $d(x)=a(x) p(x)+b(x) q(x)$.

Problem 6. Let $K \subseteq L$ be fields. Suppose that $f, g \in K[x]$ and $f \mid g$ in the ring $L[x]$. Prove that $f \mid g$ in the ring $K[x]$.

