
Homework 3

due on Wednesday, September 27

Problem 1. Prove that Rd is Euclidean for d = 3, 6, 29. Hint: Show that the

absolute value of the norm can be used as Euclidean norm.

Remark. It can be proved that the absolute value of the norm is an Euclidean

function on Rd iff d = 2, 3, 5, 6, 7, 11, 13, 17, 21, 29, 33, 37, 41, 57, 73, 76. On the other

hand, asuming the Extended Riemann Hypothesis, it was proved that for d > 0 the

ring Rd is a UFD iff it is Euclidean. It is a long standing conjecture that there are

infinitely many d > 0 for which Rd is a PID. It is known that Rd is a PID iff the

absolute value of the norm is a Dedekind-Hasse function on Rd.

Problem 2. Consider the ring R−3 = R = Z[ω] = {a + bω : a, b ∈ Z} of Eisenstein

integers, where ω = (−1 +
√

−3)/2 (note that the ω here is slightly different than

the one used in class, but the ring is the same). Observe that that ω2 + ω + 1 = 0

(so ω3 = 1).

a) Let p be an odd prime such that −3 is not a square modulo p. Prove that if a, b are

integers such that p|a2−ab+b2 then p|a and p|b. Hint. (2a−b)2+3b2 = 4(a2−ab+b2).

b) Prove that if a, b are integers such that 2|a2 − ab + b2 then 2|a and 2|b.

c) Use a), b) to conclude that if p = 2 or p is an odd prime such that −3 is not a

square modulo p then pR is a prime ideal. Conclude that pR is maximal.

d) Suppose now p is an odd prime such that −3 is a square modulo p. Prove that

pR is not a prime ideal. Conclude that p is not irreducible and p = a2 − ab + b2 for

some integers a, b. Show that the ideal pR is a product of two maximal ideals which

are different iff p 6= 3. Furthermore, show that if p 6= 3 then p ≡ 1 (mod 3) .

e) Prove that every element of R is associated to an element of the form a + bω with

both a, b non-negative and at least one of a, b even.

f) Suppose now that p ≡ 1 (mod 3) . Prove that −3 is a square modulo p. (Hint:

There is an integer whose (multiplicative) order in the group F×

p is 3). Conclude

that −3 is a square modulo an odd prime p > 3 iff p is a square modulo 3. This is

1



a special case of quadratic reciprocity.

g) Prove that a natural number n is of the form a2 + 3b2 iff evrery prime divisor of

n which is ≡ 2 (mod 3) appears in n to an even power.

Problem 3. Let d be a square-free integer.

a) Prove that every non-zero ideal of Rd is a product of maximal ideals in a unique

(up to order) way.

Hint. Uniqueness is easy. For existence assume that the result is false and choose

an ideal I maximal among those which are not products of maximal ideals (why

does I exist?). Now I is contained in a maximal ideal P . Recall that there is unique

prime number p in P and either P = pRd or PQ = pRd for some maximal ideal Q.

If I ⊆ pRd, consider the ideal (1/p)I (why is it an ideal?). Otherwise consider the

ideal (1/p)IQ and prove that it strictly contains I. Proving that IQ = pI is not

possible may require some thought (but it is a short argument).

b) Let I be and ideal of Rd. Show that I∗ = {a : a∗ ∈ I} is also an ideal in Rd and

II∗ is pricipal.

Problem 4. a) Let R ( S be two integral domains such that for any s ∈ S there

is r ∈ R such that rs ∈ R and there is a monic polynomial f ∈ R[x] such that

f(s) = 0. Prove that R is not a UFD.

b) Let R be a subring of Rd (d a square-free integer). Prove that there is a non-

negative integer k such that R = {a + kbω : a, b ∈ Z}. Show that R is not a UFD if

k > 1.

Problem 5. Let d > 1 be a positive square-free integer.

a) Let n > 0 be a natural number. Prove that there are integers m, k such that

0 < k ≤ n and |m + k
√

d| ≤ 1/n.

Hint: Show that two among the numbers 0,
√

d, 2
√

d, . . . , n
√

d have fractional parts

which are no more than 1/n apart.

b) Show that if m, k are as in a) then |m2 − dk2| ≤ 1 + 2
√

d.

c) Consider the set S = {m + k
√

d : m, k are integers and |m2 − dk2| ≤ 1 + 2
√

d}.
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Prove that S is infinite. Conclude that for some integer M such that |M | < 1+2
√

d

the ring Rd has infinitely many elements whose norm is M .

d) Prove that for any integer K the set of ideals of the form aRd, where a has norm

K, is a finite set. Conclude that there are infinitely many elements of norm M in

Rd which are pairwise associated. Conclude that the group of units of Rd is infinite.

f) Note that if u 6= ±1 is a unit of Rd then so are −u, 1/u, −1/u and one of them is

bigger than 1. Prove that if a + bω > 1 is a unit of Rd then a, b are non-negative.

Conclude that among the units of Rd which are bigger than one there is the smallest

one, which we denote by w and call the fundamental unit of Rd.

g) Prove that if w is the fundamental unit of Rd then R×

d = {±wk : k ∈ Z}.

Conclude that the groups of units of Rd is isomorphic to the group Z/2Z × Z.

h) Find the fundamental unit of R5.

Remark. Note that our proof of the existence of the fundamental unit (or any non-

trivial unit) in Rd is not constructive. There is a simple and very efficient algorithm

to compute the fundamental unit which is closely related to the so called continued

fraction expansion of the number ω − 1.

Here is a very courious result providing an explicit unit in Rd. Let D = d if

d ≡ 1 (mod 4) and D = 4d otherwise. For an integer m relatively prime to D define

χ(m) =



















(

m
d

)

, if d ≡ 1 mod 4

(−1)(m−1)/2
(

m
d

)

, if d ≡ 3 mod 4

(−1)
m

2
−1

8
+ m−1

2

a−1

2

(

m
a

)

, if d = 2a.

Let A = Πa sin πa
D

, where a runs over all integers in the interval (0, D/2) which are

relatively prime to D and satisfy χ(a) = −1. Similarly, let B = Πb sin πb
D

, where b

runs over all integers in the interval (0, D/2) which are relatively prime to D and

satisfy χ(b) = 1. Then η = A/B is a unit in Rd and η = wh, where w is the

fundamental unit and h > 0 is an integer called the class number of Rd (note that

even the fact that A > B is highly non-trivial). Rd is a PID if and only if h = 1.
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