Homework 3

due on Wednesday, September 27

Problem 1. Prove that R_{d} is Euclidean for $d=3,6,29$. Hint: Show that the absolute value of the norm can be used as Euclidean norm.

Remark. It can be proved that the absolute value of the norm is an Euclidean function on R_{d} iff $d=2,3,5,6,7,11,13,17,21,29,33,37,41,57,73,76$. On the other hand, asuming the Extended Riemann Hypothesis, it was proved that for $d>0$ the ring R_{d} is a UFD iff it is Euclidean. It is a long standing conjecture that there are infinitely many $d>0$ for which R_{d} is a PID. It is known that R_{d} is a PID iff the absolute value of the norm is a Dedekind-Hasse function on R_{d}.

Problem 2. Consider the ring $R_{-3}=R=\mathbb{Z}[\omega]=\{a+b \omega: a, b \in \mathbb{Z}\}$ of Eisenstein integers, where $\omega=(-1+\sqrt{-3}) / 2$ (note that the ω here is slightly different than the one used in class, but the ring is the same). Observe that that $\omega^{2}+\omega+1=0$ (so $\omega^{3}=1$).
a) Let p be an odd prime such that -3 is not a square modulo p. Prove that if a, b are integers such that $p \mid a^{2}-a b+b^{2}$ then $p \mid a$ and $p \mid b$. Hint. $(2 a-b)^{2}+3 b^{2}=4\left(a^{2}-a b+b^{2}\right)$.
b) Prove that if a, b are integers such that $2 \mid a^{2}-a b+b^{2}$ then $2 \mid a$ and $2 \mid b$.
c) Use a), b) to conclude that if $p=2$ or p is an odd prime such that -3 is not a square modulo p then $p R$ is a prime ideal. Conclude that $p R$ is maximal.
d) Suppose now p is an odd prime such that -3 is a square modulo p. Prove that $p R$ is not a prime ideal. Conclude that p is not irreducible and $p=a^{2}-a b+b^{2}$ for some integers a, b. Show that the ideal $p R$ is a product of two maximal ideals which are different iff $p \neq 3$. Furthermore, show that if $p \neq 3$ then $p \equiv 1(\bmod 3)$.
e) Prove that every element of R is associated to an element of the form $a+b \omega$ with both a, b non-negative and at least one of a, b even.
f) Suppose now that $p \equiv 1(\bmod 3)$. Prove that -3 is a square modulo p. (Hint: There is an integer whose (multiplicative) order in the group \mathbb{F}_{p}^{\times}is 3). Conclude that -3 is a square modulo an odd prime $p>3$ iff p is a square modulo 3 . This is
a special case of quadratic reciprocity.
g) Prove that a natural number n is of the form $a^{2}+3 b^{2}$ iff evrery prime divisor of n which is $\equiv 2(\bmod 3)$ appears in n to an even power.

Problem 3. Let d be a square-free integer.
a) Prove that every non-zero ideal of R_{d} is a product of maximal ideals in a unique (up to order) way.
Hint. Uniqueness is easy. For existence assume that the result is false and choose an ideal I maximal among those which are not products of maximal ideals (why does I exist?). Now I is contained in a maximal ideal P. Recall that there is unique prime number p in P and either $P=p R_{d}$ or $P Q=p R_{d}$ for some maximal ideal Q. If $I \subseteq p R_{d}$, consider the ideal $(1 / p) I$ (why is it an ideal?). Otherwise consider the ideal $(1 / p) I Q$ and prove that it strictly contains I. Proving that $I Q=p I$ is not possible may require some thought (but it is a short argument).
b) Let I be and ideal of R_{d}. Show that $I^{*}=\left\{a: a^{*} \in I\right\}$ is also an ideal in R_{d} and $I I^{*}$ is pricipal.

Problem 4. a) Let $R \subsetneq S$ be two integral domains such that for any $s \in S$ there is $r \in R$ such that $r s \in R$ and there is a monic polynomial $f \in R[x]$ such that $f(s)=0$. Prove that R is not a UFD.
b) Let R be a subring of R_{d} (d a square-free integer). Prove that there is a nonnegative integer k such that $R=\{a+k b \omega: a, b \in \mathbb{Z}\}$. Show that R is not a UFD if $k>1$.

Problem 5. Let $d>1$ be a positive square-free integer.
a) Let $n>0$ be a natural number. Prove that there are integers m, k such that $0<k \leq n$ and $|m+k \sqrt{d}| \leq 1 / n$.
Hint: Show that two among the numbers $0, \sqrt{d}, 2 \sqrt{d}, \ldots, n \sqrt{d}$ have fractional parts which are no more than $1 / n$ apart.
b) Show that if m, k are as in a) then $\left|m^{2}-d k^{2}\right| \leq 1+2 \sqrt{d}$.
c) Consider the set $S=\left\{m+k \sqrt{d}: m, k\right.$ are integers and $\left.\left|m^{2}-d k^{2}\right| \leq 1+2 \sqrt{d}\right\}$.

Prove that S is infinite. Conclude that for some integer M such that $|M|<1+2 \sqrt{d}$ the ring R_{d} has infinitely many elements whose norm is M.
d) Prove that for any integer K the set of ideals of the form $a R_{d}$, where a has norm K, is a finite set. Conclude that there are infinitely many elements of norm M in R_{d} which are pairwise associated. Conclude that the group of units of R_{d} is infinite.
f) Note that if $u \neq \pm 1$ is a unit of R_{d} then so are $-u, 1 / u,-1 / u$ and one of them is bigger than 1. Prove that if $a+b \omega>1$ is a unit of R_{d} then a, b are non-negative. Conclude that among the units of R_{d} which are bigger than one there is the smallest one, which we denote by w and call the fundamental unit of R_{d}.
g) Prove that if w is the fundamental unit of R_{d} then $R_{d}^{\times}=\left\{ \pm w^{k}: k \in \mathbb{Z}\right\}$. Conclude that the groups of units of R_{d} is isomorphic to the group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}$.
h) Find the fundamental unit of R_{5}.

Remark. Note that our proof of the existence of the fundamental unit (or any nontrivial unit) in R_{d} is not constructive. There is a simple and very efficient algorithm to compute the fundamental unit which is closely related to the so called continued fraction expansion of the number $\omega-1$.

Here is a very courious result providing an explicit unit in R_{d}. Let $D=d$ if $d \equiv 1(\bmod 4)$ and $D=4 d$ otherwise. For an integer m relatively prime to D define

$$
\chi(m)=\left\{\begin{array}{l}
\left(\frac{m}{d}\right), \text { if } d \equiv 1 \bmod 4 \\
(-1)^{(m-1) / 2}\left(\frac{m}{d}\right), \text { if } d \equiv 3 \bmod 4 \\
(-1)^{\frac{m^{2}-1}{8}+\frac{m-1}{2} \frac{a-1}{2}}\left(\frac{m}{a}\right), \text { if } d=2 a
\end{array}\right.
$$

Let $A=\Pi_{a} \sin \frac{\pi a}{D}$, where a runs over all integers in the interval ($0, D / 2$) which are relatively prime to D and satisfy $\chi(a)=-1$. Similarly, let $B=\Pi_{b} \sin \frac{\pi b}{D}$, where b runs over all integers in the interval $(0, D / 2)$ which are relatively prime to D and satisfy $\chi(b)=1$. Then $\eta=A / B$ is a unit in R_{d} and $\eta=w^{h}$, where w is the fundamental unit and $h>0$ is an integer called the class number of R_{d} (note that even the fact that $A>B$ is highly non-trivial). R_{d} is a $P I D$ if and only if $h=1$.

