Homework 4

due on Monday, October 16
Solve the following problems.
Problem 1. Let F be a finite field with $q=p^{n}$ elements. Let a be a generator of the multiplicative group F^{\times}(we proved that this group is cyclic).
a) Let $\mathbb{F}_{p}[x] \longrightarrow F$ be the map defined by $f(x) \mapsto f(a)$. Prove that this map is a surjective ring homomorphism whose kernel is a principal ideal generated by some irreducible polynomial $g(x) \in \mathbb{F}_{p}[x]$. Conclude that F is isomorphic to $\mathbb{F}_{p}[x] /(g)$ and that the degree of g is n. Conclude that g divides $x^{q}-x$.
b) Let $h \in \mathbb{F}_{p}[x]$ be an irreducible polynomial of degree n. prove that $\mathbb{F}_{p}[x] /(h)$ is a field with $q=p^{n}$ elements. Conclude that h divides $x^{q}-x$. Conclude that h has a root b in F. Conclude that the map $\mathbb{F}_{p}[x] \longrightarrow F, f \mapsto f(b)$ induces an isomorphism of $\mathbb{F}_{p}[x] /(h)$ and F.
c) Use a) and b) to conclude that any two finite fields with q elements are isomorphic.
d) Let g be as in a). Prove that if b is a root of g then so is b^{p}. Conclude that $a, a^{p}, \ldots, a^{p^{n-1}}$ are distinct roots of g.
e) Let f be an automorphism of the field F. Prove that there is $0 \leq k<n$ such that $f(x)=x^{p^{k}}$. Conclude that the group of all automorphisms of F is cyclic of order n.
f) Let I_{n} be the set of all monic irreducible polynomials of degree n in $\mathbb{F}_{p}[x]$. Prove that

$$
x^{p^{n}}-x=\prod_{k \mid n} \prod_{f \in I_{k}} f
$$

Let i_{n} be the cardinality of I_{n}. Conclude that

$$
p^{n}=\sum_{k \mid n} k i_{k} .
$$

This allows to compute i_{k} for every k.

Problem 2. Let K be a field and let R be an integral domain containing K as a subring and finite dimensional as a K-vector space. Prove that R is a field.

Problem 3. Solve problems 3,4 to section 7.2. In addition, prove that when R is a field, then $R[[x]]$ is an Euclidean domain. Consult problem 5 to 7.2 . and example 4 in section 8.1.

Problem 4. Ler R be a UFD and let S be a multiplicative subset of R. Prove that $S^{-1} R$ is a UFD. Is the same true with UFD replaced by PID?

Problem 5. Let A be an ordered abelian group (like the integers). A valuation on an integral domain R is a function $v: R-\{0\} \longrightarrow A$ such that

1. $v(a b)=v(a)+v(b)$ for all $a, b \in A$;
2. $v(a+b) \geq \min (v(a), v(b))$ for all $a, b \in A$, such that $a+b \neq 0$

Let v be a valuation on R.
a) Let K be the field of fractions of R. For a non-zero element a / b of K define $v(a / b)=v(a)-v(b)$. Prove that v is well defined and it is a valuation on K.
b) Define a function $w: R[x]-\{0\} \longrightarrow A$ by $w(f)=$ the smallest of the valuations of the non-zero coefficients of the polynomial f. Prove that w is a valuation on $R[x]$.
c) Use b) to prove Gauss' Lemma. Hint: if R is a UFD then any irreducible element of R corresponds to a discrete valuation on R (i.e. the valuation has values in the integers).

Problem 6. Let R be an integral domain with PACC. Prove that $R[x]$ has PACC.

Problem 7. a) Let p be an odd prime and $n \geq 1$ an integer. Prove that if a is an integer such that $a-1$ is divisible by p but it is not divisible by p^{2} then the image of a in the multiplicative group of $\mathbb{Z} / p^{n} \mathbb{Z}$ is p^{n-1}. Conclude that the multiplicative group of $\mathbb{Z} / p^{n} \mathbb{Z}$ is cyclic and if a is a primitive root modulo p then either the image of a or the image of $a+p$ generates this group.
b) Let $n \geq 3$. Prove that the order of the image of 5 in the multiplicative group of $\mathbb{Z} / 2^{n} \mathbb{Z}$ is 2^{n-2}. Conclude that the multiplicative group of $\mathbb{Z} / 2^{n} \mathbb{Z}$ is a direct product of a cyclic group of order 2^{n-2} and a cyclic group of order 2 .

