Homework 5

due on Wednesday, November 1

Read sections 10.1-10.5 in Dummit and Foote. Solve problems 16, 17 to section 10.3 and problem 20 to section 10.4 of Dummit and Foote. Also solve the following problems:

Problem 1. Let n be a positive integer. Prove that R has IBN (invariant basis number) iff $\mathrm{M}_{n}(R)$ has IBN.

Problem 2. Consider the ring $C[0,1]$ of all continuous real-valued functions on the interval $[0,1]$. Let R be the subset of $C[0,1]$ which consits of all functions f such that $f(0)=f(1)$ and let M be the subset of $C[0,1]$ which consits of all functions f such that $f(0)=-f(1)$.
a) Prove that R is a subring of $C[0,1]$ and M is an R-module (where the addition and multiplication comes from addition and multiplication in $C[0,1]$).
b) Prove that $M \oplus M$ and $R \oplus R$ are isomorphic as R-modules. Hint: Find an invertible 2 by 2 matrix whose entries are in M.
c) Prove that M is not a free R-module. Hint: Prove that if it was free, it would be isomorhic to R and then derive a contradiction.

Problem 3. Let R be a commutative ring and S a multiplicative subset of R. For an R module M consider the set $M \times S$ and the relation $(m, s) \sim(n, t)$ iff $r(t m-s n)=0$ for some $r \in S$.
a) Show that \sim is an equivalence relation. Denote the equivalence class of (m, s) by $\frac{m}{s}$ and the set of all equivalence classes by $S^{-1} M$. Prove that the operation

$$
\frac{m}{s}+\frac{n}{t}=\frac{t m+s n}{s t}
$$

is well defined and makes $S^{-1} M$ and abelian group.
b) For $\frac{r}{t} \in S^{-1} R$ and $\frac{m}{s} \in S^{-1} M$ define

$$
\frac{r}{t} \frac{m}{s}=\frac{r m}{t s}
$$

Prove that this is a well defined operation which makes $S^{-1} M$ into and $S^{-1} R$ module.
c) Let $f: M \longrightarrow N$ be a homomorphism of R-modules. Show that $\hat{f}: S^{-1} M \longrightarrow$ $S^{-1} N$ given by

$$
\hat{f}\left(\frac{m}{s}\right)=\frac{f(m)}{s}
$$

is well defined and it is a homomorphism of $S^{-1} R$-modules.
d) A sequence of R-module homomorphisms $M \xrightarrow{f} N \xrightarrow{g} P$ is exact if the kernel of g coincides with the image of f. Prove that if

$$
M \xrightarrow{f} N \xrightarrow{g} P
$$

is an exact sequence then so is

$$
S^{-1} M \xrightarrow{\hat{f}} S^{-1} N \xrightarrow{\hat{g}} S^{-1} P .
$$

In particular, if M is a submodule of N then $S^{-1} M$ can be naturally considered as a submodule of $S^{-1} N$.
e) Let N, P be submodules of an R-module M. Prove that

1. $S^{-1}(N+P)=S^{-1} N+S^{-1} P$;
2. $S^{-1}(N \cap P)=S^{-1} N \cap S^{-1} P$;
3. the $S^{-1} R$-modules $S^{-1}(M / N)$ and $S^{-1} M / S^{-1} N$ are isomorphic.
e) For an R-module M define the annihilator of M as

$$
\operatorname{ann}(M)=\{r \in R: r m=0 \text { for all } m \in M\}
$$

Prove that $\operatorname{ann}(M)$ is an ideal. Prove that $S^{-1} \operatorname{ann}(M)=\operatorname{ann}\left(S^{-1} M\right)$ provided M is a finitely generated R-module..
f) Let N, P be submodules of an R-module M. Define

$$
(N: P)=\{r \in R: r x \in N \text { for all } x \in P\} .
$$

Prove that $(N: P)$ is an ideal in R. Prove that $S^{-1}(N: P)=\left(S^{-1} N: S^{-1} P\right)$ provided P is finitely generated.

Problem 4. For a prime ideal P of a commutative ring R and an R-module M define $M_{P}=S^{-1} M$, where $S=R-P . M_{P}$ is called the localization of M at P. Let $f: M \longrightarrow N$ be a homomorphism of R-modules. Prove that the following are equivalent:

1. f is injective;
2. $\hat{f}: M_{P} \longrightarrow N_{P}$ is injective for all prime ideals P;
3. $\hat{f}: M_{P} \longrightarrow N_{P}$ is injective for all maximal ideals P;

Prove the same with injective replaced by surjective.

