## Homework 6

due on Wednesday, November 15

Read Chapter 10 of Dummit and Foote. Solve problems 14, 27, 28 to 10.5. Also solve the following problems.

Problem 1. Let $R$ be a ring. Let $J$ be the intersection of all maximal left ideals of $R$ (so $J$ is a left ideal of $R$ ).
a) Prove that if $a \in J$ then $1+a$ has a left inverse $u$ and $1-u \in J$. Conclude that $1+a$ is invertible.
b) Prove that if $r \in R$ then the left ideal $J r$ is contained in every maximal left ideal of $R$. Conclude that $J$ is a two-sided ideal. Hint: Take a maximal left ideal $M$ and consider the homomorphism $f: R \longrightarrow R / M$ of left $R$-modules defined by $f(a)=a r+M$. Wha can you say about the kernel of this homomorphism?
c) Prove that $J$ is contained in every maximal right ideal of $R$. Conclude that $J$ is the inersection of all maximal right ideals of $R$.
d) The ideal $J$ is called the Jacobson radical of $R$. Let $a \in R$. Prove that the following conditions are equivalent:

1. $a \in J$.
2. $1-r a$ has a left inverse for all $r \in R$.
3. $1-a r$ has a right inverse for all $r \in R$.
4. 1-ras is invertible for every $r, s \in R$.
5. $a M=0$ for every simple left $R$-module $M$.
6. $M a=0$ for every simple right $R$-module $M$.

Hint: Show that a simple left $R$-module is isomorphic to $R / K$ for some maximal left ideal $K$.

Problem 2. Let $R$ be a ring and $J$ its Jacobson radical.
a) Suppose that $M$ is a finitely generated left $R$-module such that $J M=M$. Prove that $M=0$ Hint: work with a minimal set of generators of $M$. This result is called Nakayama's Lemma.
b) Suppose that $N$ is a submodule of a finitely generated left $R$-module $M$ such that $M=N+J M$. Prove that $M=N$.
c) Let $f: M \longrightarrow N$ be a homomorphism of feft $R$-modules. It induces a homomor$\operatorname{phism} \bar{f}: M / J M \longrightarrow N / J N$ of $R / J$-modules. Prove that if $N$ is finitely generated then $f$ is surjective iff $\bar{f}$ is surjective. Prove that if in addition $M$ is finitely generated and $f$ is a split epimorphism then $f$ is an isomorphism iff $\bar{f}$ is an isomorphism.
d) Suppose that $P, Q$ are left $R$-modules and $g: P / J P \longrightarrow Q / J Q$ is a surjective homomorphism of $R / J$-modules. Prove that if $P$ is projective then there is a homomorphism $f: P \longrightarrow Q$ such that $\bar{f}=g$. Conclude that if both $P, Q$ are finitely generarated projective left $R$-modules then $P$ and $Q$ are isomorphic if and only if $P / J P$ and $Q / J Q$ are isomorphic.
e) Let $R$ be a ring such that $R / J$ is a division ring (such rings are called local; this means that $R$ has unique maximal left ideal). Prove that every finitely generated projective $R$-module is free.
Remark: Kaplansky proved that the same holds for all projective modules (not necessarily finitely generated).

Problem 3. Let $0 \longrightarrow F_{n} \longrightarrow \ldots \longrightarrow F_{0} \longrightarrow P \longrightarrow 0$ be an exact sequence of finitely generated $R$-modules, where $P$ is projective and $F_{i}$ are free. Prove that $P \oplus R^{m}$ is free for some $m$ (such $P$ are called stably free).

Problem 4. Let $R$ be a UFD. Prove that an ideal of $R$ is projective iff it is principal. Problem 5. Let $R$ be a commutative ring such that every finitely generated projective $R$-module is free. Prove that $\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ is a row of an invertible $n \times n$ matrix over $R$ iff the ideal generated by $a_{1}, \ldots, a_{n}$ is $R$. Hint: Note that the condition is equivalent to $\left(a_{1}, \ldots, a_{n}\right)$ being part of a basis of $R^{n}$. Pick $x_{1}, \ldots, x_{n}$ such that $x_{1} a_{1}+\ldots x_{n} a_{n}=1$ and consider the homomorphism $R^{n} \longrightarrow R$ sending $\left(b_{1}, \ldots, b_{n}\right)$ to $x_{1} b_{1}+\ldots x_{n} b_{n}$.

Problem 6. A left $R$-module $M$ is called hereditary if every submodule of $M$ is projective. Prove that a direct sum of hereditary $R$-modules is hereditary.

Problem 7. Let $R$ be a commutative ring.
a) Prove that if $R$ is hereditary and it is not a domain then $R=e R \oplus(1-e) R$ for some non-trivial idempotent $e$. Prove that each $e R$ and $(1-e) R$ is a hereditary ring.
b) Prove that if $R=S \times T$ is a product of 2 rings then $R$ is hereditary iff both $S$ and $T$ are hereditary.
c) Prove that if $R$ is Noetherian then it is hereditary iff it is a product of finitely many Dedekind domains.

Problem 8. a) Let $M$ and $N$ be left $R$-modules. Show that there is a well defined natural homomorphism $h_{M, N}: \operatorname{Hom}_{R}(M, R) \otimes_{R} N \longrightarrow \operatorname{Hom}_{R}(M, N)$ such that $h_{M, N}(f \otimes n)(m)=f(m) n$.
b) Prove that if the identity is in the image of $h_{M, M}$ then $M$ is finitely generated and projective.
c) Prove that if $M$ is finitely generated and projective then $h_{M, N}$ is an isomorphism for every $N$. Hint: show that $M_{1} \oplus M_{2}$ has this property iff each $M_{1}$ and $M_{2}$ have it.

