Homework 7

due on Wednesday, November 29

Problem 1. Let R be a commutative ring and S a multiplicative subset of R. Show that for any R-module M we have natural isomorphism $S^{-1} M \simeq S^{-1} R \otimes_{R} M$. Prove that $S^{-1} R$ is a flat R-module.

Problem 2. Let R be a ring with a striclty increasing chain of left ideals $J_{1} \subsetneq$ $J_{2} \subsetneq \ldots$. Let $J=\bigcup_{i=0}^{\infty} J_{i}$. Let M_{i} be an injective left R-module containing J / J_{i} for $i=1,2, \ldots$. Prove that the module $M=\bigoplus_{i=1}^{\infty} M_{i}$ is not injective. Conclude that if a direct sum of any countable set of injective left R-modules is injective then R is left Noetherian.

Hinf: Define a homomorphism from J to M which can not be lifted to R. Note that any homomorhism from R to M has image contained in a direct sum of finitely many of the M_{i} 's.

Problem 3. Let $R=\mathbb{Z}[x]$. Let $M=\mathbb{Q}(x) / \mathbb{Z}[x]$, where $\mathbb{Q}(x)$ is the field of rational functions with rational coefficients. Prove that M is a divisible $\mathbb{Z}[x]$-module. Consider the ideal $I=(2, x)$ of $\mathbb{Z}[x]$. Prove that there is a $\mathbb{Z}[x]$-module homomorphism $f: I \longrightarrow M$ such that $f(2)=\frac{1}{x}+\mathbb{Z}[x]$ and $f(x)=\frac{x}{2}+\mathbb{Z}[x]$. Use it to prove that M is not injective $\mathbb{Z}[x]$-module.

Problem 4. Let M be a right R-module and P a flat left R-module. Suppose that $0=m_{1} \otimes p_{1}+m_{2} \otimes p_{2}+\ldots+m_{k} \otimes p_{k}$ in $M \otimes_{R} P$. Prove that there exist elements q_{1}, \ldots, q_{n} in P and $r_{i, j} \in R$ for $1 \leq i \leq k, 1 \leq j \leq n$ such that $p_{i}=\sum_{j=1}^{n} r_{i, j} q_{j}$ and $\sum_{i=1}^{k} m_{i} r_{i, j}=0$ for all j.
Hint. Use the fact that any exact sequence tensored with P is exact. Apply it to $0 \longrightarrow K \longrightarrow R^{k} \longrightarrow M$ where the last arrow is the map $f\left(r_{1}, \ldots, r_{k}\right)=\sum_{i=1}^{k} m_{i} r_{i}$ and K is the kernel of f.

Problem 5. Let R be a ring and let $J=J(R)$ be the Jacobson radical of R.
a) Prove that $J\left(M_{n}(R)\right)=M_{n}(J)$. Conclude that if I is an ideal contained in J then $A \in M_{n}(R)$ is invertible iff its image in $M_{n}(R / I)$ is invertible.
b) Prove that if R is commutative then $J(R[x])=N[x]$, where N is the nilradical
of R (problem 3 from second homework may be useful).
c) Prove that if R has no non-zero nil ideals (i.e. two sided ideals whose all elements are nilpotent) then $J(R[x])=\{0\}$. Hint: Consider a non-zero polynomial of lowest degree in $J(R[x])$ and show that the ideal in R generated by its leading coefficient is nil.
d) For a left R module M define $\operatorname{rad}(M)$ to be the intersection of all maximal submodules of $M(\operatorname{set} \operatorname{rad}(M)=M$ if M has no maximal submodules). Prove that $J M \subseteq \operatorname{rad}(M)$ for any left R-module M. Prove that the equality holds for projective modules M. Hint: Show that $\operatorname{rad}(M \oplus N)=\operatorname{rad}(M) \oplus \operatorname{rad}(N)$, and, more generally, $\operatorname{rad}\left(\bigoplus_{i \in I} M_{i}\right)=\bigoplus_{i \in I} \operatorname{rad}\left(M_{i}\right)$.

