Midterm, Math 525

October 23
Solve the following problems. Clearly state any main result you are using in your solution. Please write carefully and clearly in complete sentences. Take pains to explain what you are doing.

Problem 1. Let R be a commutative ring such that for every $a \in R$ there is a natural number $n>1$ such that $a^{n}=a$. Prove that every prime ideal in R is maximal. (6 points)

Problem 2. Let $R=\mathbb{Z}[\sqrt{-7}]=\{a+b \sqrt{-7}: a, b \in \mathbb{Z}\}$ (so this ring is a subring of R_{-7}).
a) Find all invertible elements in R. (1 point)
b) Prove that $2,1+\sqrt{-7}, 1-\sqrt{-7}$ are irreducible in R. Conclude that R is not a UFD. (4 points)
c) Prove that the ideal $I=<2,1+\sqrt{-7}>$ of R is not principal and that it is maximal. Prove that $I^{2}=2 I$. Is there an n such that I^{n} is principal? (5 points)

Problem 3. Prove that the polynomial $f=x^{2} y^{2017}+x^{2017} y+x^{2}-y-1$ is irreducible in $\mathbb{Q}[x, y]$. Hint: Consider f as a polynomial in $R[y]$, where $R=\mathbb{Q}[x]$. (8 points)

Problem 4. Let R be a ring which contains a left ideal I minimal among all non-zero left ideals. Suppose that $I^{2} \neq 0$.
a) Prove that $R a=I$ for all $a \in I, a \neq 0$. (1 point)
b) Prove that if $a \in I$ then either $I a=I$ or $I a=\{0\}$. (2 points)
c) Prove that there is $a \in I$ such that $I a=I$. Prove that for any such a the map $I \longrightarrow I$ given by $x \mapsto x a$ is bijective. (4 points).
d) Let a be as in c). Prove that there is an idempotent $e \in I$ (i.e. $e^{2}=e$) such that $e a=a$. Conclude that $I=R e$. (3 points)

Problem 5. Let R be a PID and let I, J be proper ideals of R.
a) Prove that the intersection of all the ideals $I^{n}, n=1,2, \ldots$, is trivial (this is true, but harder to prove, for any Noetherian integral domain and any ideal I). (2 points)
b) Prove that if $J \neq\{0\}$ then $\bigcap_{n=1}^{\infty}\left(J+I^{n}\right)=J+I^{k}$ for some k. (6 points)

Problem 6. Let I be an ideal in a commutative ring R and let P_{1}, P_{2}, P_{2} be prime ideals of R such that $I \subseteq P_{1} \cup P_{2} \cup P_{3}$. Prove that $I \subseteq P_{i}$ for some i (this is true even if only one of the ideals P_{i} is prime). (6 points)
Hint. Prove this first for 2 prime ideals. Can you generalize it to n prime ideals?

