Study Chapters 7 and 8 of Dummit and Foote. Solve problem 26 to 7.1, problem 39 to 7.4 and the following problems.

Problem 1. Find a greatest common divisor $d(x)$ of the polynomials $p(x) = x^3 + 4x^2 + x - 6$ and $q(x) = x^5 - 6x + 5$ in the ring $\mathbb{Q}[x]$ and find $a(x), b(x) \in \mathbb{Q}[x]$ such that $d(x) = a(x)p(x) + b(x)q(x)$.

Problem 2. Let $K \subseteq L$ be fields. Suppose that $f, g \in K[x]$ and $f|g$ in the ring $L[x]$. Prove that $f|g$ in the ring $K[x]$.

Problem 3. Let R be a unique factorization domain. Let a, b, c be non-zero elements of R. Prove the following:

1. If $c|ab$ and $\gcd(a, c) = 1$ then $c|b$.
2. If $a|c$, $b|c$, and $\gcd(a, b) = 1$ then $ab|c$.
3. If $\gcd(a, c) = 1 = \gcd(b, c)$ then $\gcd(ab, c) = 1$.
4. If $c|a$ and $c|b$ then $c\gcd(a/c, b/c) = \gcd(a, b)$.
5. If m, n are positive integers then $\gcd(a, b) = 1$ iff $\gcd(a^m, b^n) = 1$.
6. If n is a positive integer and $a^n|b^n$ then $a|b$.
7. $\gcd(a, b)\text{lcm}(a, b)$ is associated to ab.
8. $\gcd(a, b, c) = \gcd(a, \gcd(b, c))$ and $\text{lcm}(a, b, c) = \text{lcm}(a, \text{lcm}(b, c))$.

Problem 4. Prove that R_d is Euclidean for $d = 3, 6, 29$. Hint: Show that the absolute value of the norm can be used as Euclidean norm.

Remark. It can be proved that the absolute value of the norm is an Euclidean function on R_d iff $d = 2, 3, 5, 6, 7, 11, 13, 17, 21, 29, 33, 37, 41, 57, 73, 76$. On the other hand, assuming the Extended Riemann Hypothesis, it was proved that for $d > 0$ the ring R_d is a UFD iff it is Euclidean. It is a long standing conjecture that there are infinitely many $d > 0$ for which R_d is a PID. It is known that R_d is a PID iff the absolute value of the norm is a Dedekind-Hasse function on R_d.

1
Problem 5. Consider the ring $R_{-3} = R = \mathbb{Z}[\omega] = \{a + b\omega : a, b \in \mathbb{Z}\}$ of Eisenstein integers, where $\omega = (-1 + \sqrt{-3})/2$ (note that the ω here is slightly different than the one used in class, but the ring is the same). Observe that that $\omega^2 + \omega + 1 = 0$ (so $\omega^3 = 1$).

a) Let p be an odd prime such that -3 is not a square modulo p. Prove that if a, b are integers such that $p|a^2 - ab + b^2$ then $p|a$ and $p|b$. **Hint.** $(2a-b)^2 + 3b^2 = 4(a^2 - ab + b^2)$.

b) Prove that if a, b are integers such that $2|a^2 - ab + b^2$ then $2|a$ and $2|b$.

c) Use a), b) to conclude that if $p = 2$ or p is an odd prime such that -3 is not a square modulo p then pR is a prime ideal. Conclude that pR is maximal.

d) Suppose now p is an odd prime such that -3 is a square modulo p. Prove that pR is not a prime ideal. Conclude that p is not irreducible and $p = a^2 - ab + b^2$ for some integers a, b. Show that the ideal pR is a product of two maximal ideals which are different iff $p \neq 3$. Furthermore, show that if $p \neq 3$ then $p \equiv 1 \pmod{3}$.

e) Prove that every element of R is associated to an element of the form $a + b\omega$ with both a, b non-negative and at least one of a, b even.

f) Suppose now that $p \equiv 1 \pmod{3}$. Prove that -3 is a square modulo p. (Hint: There is an integer whose (multiplicative) order in the group \mathbb{F}_p^\times is 3). Conclude that -3 is a square modulo an odd prime $p > 3$ iff p is a square modulo 3. This is a special case of quadratic reciprocity.

g) Prove that a natural number n is of the form $a^2 + 3b^2$ iff every prime divisor of n which is $\equiv 2 \pmod{3}$ appears in n to an even power.

Problem 6. Let d be a square-free integer.

a) Prove that every non-zero ideal of R_d is a product of maximal ideals in a unique (up to order) way. **Hint.** Uniqueness is easy. For existence assume that the result is false and choose an ideal I maximal among those which are not products of maximal ideals (why does I exist?). Now I is contained in a maximal ideal P. Recall that there is unique prime number p in P and either $P = pR_d$ or $PQ = pR_d$ for some maximal ideal Q.

2
If $I \subseteq pR_d$, consider the ideal $(1/p)I$ (why is it an ideal?). Otherwise consider the ideal $(1/p)IQ$ and prove that it strictly contains I. Proving that $IQ = pI$ is not possible may require some thought (but it is a short argument).

b) Let I be an ideal of R_d. Show that $I^* = \{ a : a^* \in I \}$ is also an ideal in R_d and II^* is principal.

Problem 7. a) Let $R \subseteq S$ be two integral domains such that for any $s \in S$ there is $r \in R$ such that $rs \in R$ and there is a monic polynomial $f \in R[x]$ such that $f(s) = 0$. Prove that R is not a UFD.

b) Let R be a subring of R_d (d a square-free integer). Prove that there is a non-negative integer k such that $R = \{ a + kb\omega : a, b \in \mathbb{Z} \}$. Show that R is not a UFD if $k > 1$.

Problem 8. Let $d > 1$ be a positive square-free integer.

a) Let $n > 0$ be a natural number. Prove that there are integers m, k such that $0 < k \leq n$ and $|m + k\sqrt{d}| \leq 1/n$.

Hint: Show that two among the numbers $0, \sqrt{d}, 2\sqrt{d}, \ldots, n\sqrt{d}$ have fractional parts which are no more than $1/n$ apart.

b) Show that if m, k are as in a) then $|m^2 - dk^2| \leq 1 + 2\sqrt{d}$.

c) Consider the set $S = \{ m + k\sqrt{d} : m, k \text{ are integers and } |m^2 - dk^2| \leq 1 + 2\sqrt{d} \}$. Prove that S is infinite. Conclude that for some integer M such that $|M| < 1 + 2\sqrt{d}$ the ring R_d has infinitely many elements whose norm is M.

d) Prove that for any integer K the set of ideals of the form aR_d, where a has norm K, is a finite set. Conclude that there are infinitely many elements of norm M in R_d which are pairwise associated. Conclude that the group of units of R_d is infinite.

f) Note that if $u \neq \pm 1$ is a unit of R_d then so are $-u, 1/u, -1/u$ and one of them is bigger than 1. Prove that if $a + b\omega > 1$ is a unit of R_d then a, b are non-negative. Conclude that among the units of R_d which are bigger than one there is the smallest one, which we denote by w and call the fundamental unit of R_d.

g) Prove that if w is the fundamental unit of R_d then $R_d^* = \{ \pm w^k : k \in \mathbb{Z} \}$.
Conclude that the groups of units of R_d is isomorphic to the group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$.

h) Find the fundamental unit of R_5.

Remark. Note that our proof of the existence of the fundamental unit (or any non-trivial unit) in R_d is not constructive. There is a simple and very efficient algorithm to compute the fundamental unit which is closely related to the so called continued fraction expansion of the number $\omega - 1$.

Here is a very curious result providing an explicit unit in R_d. Let $D = d$ if $d \equiv 1 \pmod{4}$ and $D = 4d$ otherwise. For an integer m relatively prime to D define

$$\chi(m) = \begin{cases}
\left(\frac{m}{d}\right), & \text{if } d \equiv 1 \pmod{4} \\
(-1)^{(m-1)/2} \left(\frac{m}{d}\right), & \text{if } d \equiv 3 \pmod{4} \\
(-1)^{m^2 - 1 + m - 1} \left(\frac{m}{a}\right), & \text{if } d = 2a.
\end{cases}$$

Let $A = \Pi_a \sin \frac{\pi a}{D}$, where a runs over all integers in the interval $(0, D/2)$ which are relatively prime to D and satisfy $\chi(a) = -1$. Similarly, let $B = \Pi_b \sin \frac{\pi b}{D}$, where b runs over all integers in the interval $(0, D/2)$ which are relatively prime to D and satisfy $\chi(b) = 1$. Then $\eta = A/B$ is a unit in R_d and $\eta = w^h$, where w is the fundamental unit and $h > 0$ is an integer called the class number of R_d (note that even the fact that $A > B$ is highly non-trivial). R_d is a PID if and only if $h = 1$.
