Homework 6
due on Thursday, December 3

Read carefully chapter 12 of Dummit and Foote. Solve problems 11, 37, 38 to section 12.3. Also solve the following problems.

Problem 1. Let R be a ring. Let J be the intersection of all maximal left ideals of R (so J is a left ideal of R).

a) Prove that if $a \in J$ then $1 - a$ has a left inverse u and $1 - u \in J$. Conclude that $1 - a$ is invertible.

b) Prove that if $r \in R$ then the left ideal Jr is contained in every maximal left ideal of R. Conclude that J is a two-sided ideal. Hint: Take a maximal left ideal M and consider the homomorphism $f : R \rightarrow R/M$ of left R-modules defined by $f(a) = ar + M$. Note that R/M is a simple left R-module. What can you say about the kernel of this homomorphism?

Alternatively, assume $jr + m = 1$ for some $j \in J$ and $m \in M$ and conclude that $r = (1 - rj)^{-1}rm \in M$, a clear contradiction.

c) Prove that J is contained in every maximal right ideal of R. Conclude that J is the intersection of all maximal right ideals of R (reverse the roles of left and right).

d) The ideal J is called the **Jacobson radical** of R. Let $a \in R$. Prove that the following conditions are equivalent:

1. $a \in J$.

2. $1 - ra$ has a left inverse for all $r \in R$.

3. $1 - ar$ has a right inverse for all $r \in R$.

4. $1 - ras$ is invertible for every $r, s \in R$.

5. $aM = 0$ for every simple left R-module M.

6. $Ma = 0$ for every simple right R-module M.

Hint: Recall that a left R-module is simple iff it isomorphic to R/K for some maximal left ideal K.

1
Problem 2. Let R be a ring and J its Jacobson radical.

a) Suppose that M is a finitely generated left R-module such that $JM = M$. Prove that $M = 0$. Hint: work with a minimal set of generators of M. This result is called Nakayama’s Lemma.

b) Suppose that N is a submodule of a finitely generated left R-module M such that $M = N + JM$. Prove that $M = N$.

c) Let $f : M \rightarrow N$ be a homomorphism of left R-modules. It induces a homomorphism $\bar{f} : M/JM \rightarrow N/JN$ of R/J-modules. Prove that if N is finitely generated then f is surjective iff \bar{f} is surjective. Prove that if in addition M is finitely generated and f is a split epimorphism then f is an isomorphism iff \bar{f} is an isomorphism.

d) Suppose that P, Q are left R-modules and $g : P/JP \rightarrow Q/JQ$ is a surjective homomorphism of R/J-modules. Prove that if P is projective then there is a homomorphism $f : P \rightarrow Q$ such that $\bar{f} = g$. Conclude that if both P, Q are finitely generated projective left R-modules then P and Q are isomorphic if and only if P/JP and Q/JQ are isomorphic.

e) Let R be a ring such that R/J is a division ring (such rings are called local; this means that R has unique maximal left ideal). Prove that every finitely generated projective R-module is free.

Remark: Kaplansky proved that the same holds for all projective modules (not necessarily finitely generated).

Problem 3. Let R be a ring and let $J = J(R)$ be the Jacobson radical of R.

a) Prove that $J(M_n(R)) = M_n(J)$. Conclude that if I is an ideal contained in J then $A \in M_n(R)$ is invertible iff its image in $M_n(R/I)$ is invertible.

b) Prove that if R is commutative then $J(R[x]) = N[x]$, where N is the nilradical of R (problem 6 from third homework may be useful).

c) Prove that if R has no non-zero nil ideals (i.e. two sided ideals whose all elements are nilpotent) then $J(R[x]) = \{0\}$. Hint: Consider a non-zero polynomial of lowest degree in $J(R[x])$ and show that its leading coefficient commutes with all the other
coefficients. Use this to show that the ideal in \(R \) generated by the leading leading coefficient is nil.

d) For a left \(R \) module \(M \) define \(\text{rad}(M) \) to be the intersection of all maximal submodules of \(M \) (set \(\text{rad}(M) = M \) if \(M \) has no maximal submodules). Prove that \(JM \subseteq \text{rad}(M) \) for any left \(R \)-module \(M \). Prove that the equality holds for projective modules \(M \). Hint: Show that \(\text{rad}(M \oplus N) = \text{rad}(M) \oplus \text{rad}(N) \), and, more generally, \(\text{rad}(\bigoplus_{i \in I} M_i) = \bigoplus_{i \in I} \text{rad}(M_i) \).

Problem 4. Let \(M \) be a left \(R \)-module and \(f \) an endomorphism of \(M \). For each \(n \) let \(K_n, I_n \) be the kernel and image of \(f^n \) respectively.

a) Prove that if \(I_n = I_{n+1} \) then \(M = I_n + K_n \).

b) Prove that if \(K_n = K_{n+1} \) then \(I_n \cap K_n = \{0\} \).

c) Prove that if \(M \) is Artinian then \(M = I_n + K_n \) for all sufficiently large \(n \).

d) Prove that if \(M \) is Noetherian then \(I_n \cap K_n = \{0\} \) for all sufficiently large \(n \).

e) Prove that if \(M \) is Artinian and \(f \) is a monomorphism then \(f \) is an isomorphism.

f) Prove that if \(M \) is Noetherian and \(f \) is surjective then \(f \) is an isomorphism.

(Remark: If \(R \) is commutative this is true for any finitely generated module \(M \). Can you prove it?)

g) Suppose that \(M \) has finite length and cannot be decomposed into a direct sum of proper submodules. Prove that either \(f \) is nilpotent or it is an isomorphism. Conclude that in the ring \(\text{End}_R(M) \) the Jacobson radical \(J \) consists of nilpotent elements and \(\text{End}_R(M)/J \) is a division ring.

Problem 5. a) Let \(F \) be a free right \(R \)-module with basis \(e_1, \ldots, e_n \) and let \(P \) be a left \(R \)-module. Show that every element of \(F \otimes_R P \) can be written in a unique way as \(e_1 \otimes p_1 + \ldots + e_n \otimes p_n \) for some \(p_1, \ldots, p_n \in P \).

b) Let \(M \) be a right \(R \)-module and \(P \) a flat left \(R \)-module. Suppose that \(0 = m_1 \otimes p_1 + m_2 \otimes p_2 + \ldots + m_k \otimes p_k \) in \(M \otimes_R P \). Prove that there exist elements \(q_1, \ldots, q_n \) in \(P \) and \(r_{i,j} \in R \) for \(1 \leq i \leq k, 1 \leq j \leq n \) such that \(p_i = \sum_{j=1}^n r_{i,j} q_j \) and \(\sum_{i=1}^k m_i r_{i,j} = 0 \) for all \(j \).
Hint. Use the fact that any exact sequence tensored with P is exact. Apply it to $0 \rightarrow K \rightarrow R^k \rightarrow M$ where the last arrow is the map $f(r_1, \ldots, r_k) = \sum_{i=1}^{k} m_i r_i$ and K is the kernel of f.

c) Let P be a left R-module such that for any $r_1, \ldots, r_k \in R$ and any $p_1, \ldots, p_k \in P$ such that $r_1 p_1 + r_2 p_2 + \ldots + r_k p_k = 0$ there exist elements q_1, \ldots, q_n in P and $r_{i,j} \in R$ for $1 \leq i \leq k, 1 \leq j \leq n$ such that $p_i = \sum_{j=1}^{n} r_{i,j} q_j$ and $\sum_{i=1}^{k} r_i r_{i,j} = 0$ for all j. Prove that P is flat. Hint: Use "Baer’s Criterion" for flat modules.