Homework 2

due on Monday, September 23

Study Chapters 7 and 8 of Dummit and Foote. Solve problem 26 to 7.1, problem 39 to 7.4 and the following problems.

Problem 1. Let R be a unique factorization domain. Let a, b, c be non-zero elements of R. Prove the following:

- 1. If $c|ab$ and $gcd(a, c) = 1$ then $c|b$.
- 2. If $a|c, b|c$, and $gcd(a, b) = 1$ then $ab|c$.
- 3. If $gcd(a, c) = 1 = gcd(b, c)$ then $gcd(ab, c) = 1$.
- 4. If $c|a$ and $c|b$ then $c \gcd(a/c, b/c) = \gcd(a, b)$.
- 5. If m, n are positive integers then $gcd(a, b) = 1$ iff $gcd(a^m, b^n) = 1$.
- 6. If *n* is a positive integer and $a^n | b^n$ then $a | b$.
- 7. $gcd(a, b)$ lcm (a, b) is associated to ab.
- 8. $gcd(a, b, c) = gcd(a, gcd(b, c))$ and $lcm(a, b, c) = lcm(a, lcm(b, c))$.

Problem 2. Prove that S_d is Euclidean for $d = 3, 6, 29$. (Show that the absolute value of the norm can be used as Euclidean norm.)

Hint: Show that if $0 < a < 2$ and $a \neq 5/4$ then for any b there is an integer m such that $|(b - m)^2 - a| < 1$.

Remark. It can be proved that the absolute value of the norm is an Euclidean function on S_d iff $d = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.$ On the other hand, assuming the Extended Riemann Hypothesis, it was proved that for $d > 0$ the ring S_d is a UFD iff it is Euclidean. It is a long standing conjecture that there are infinitely many $d > 0$ for which S_d is a PID. We proved in class that S_d is a PID iff the absolute value of the norm is a Dedekind-Hasse function on S_d .

Problem 3. Consider the ring $S_{-3} = R = \mathbb{Z}[\omega] = \{a + b\omega : a, b \in \mathbb{Z}\}\)$ of Eisenstein integers, where $\omega = (-1 + \sqrt{-3})/2$ (note that the ω here is slightly different than the one used in class, but the ring is the same). Observe that that $\omega^2 + \omega + 1 = 0$ (so $\omega^3 = 1$).

a) Let p be an odd prime such that -3 is not a square modulo p. Prove that if a, b are integers such that $p|a^2-ab+b^2$ then $p|a$ and $p|b$. **Hint.** $(2a-b)^2+3b^2 = 4(a^2-ab+b^2)$.

b) Prove that if a, b are integers such that $2|a^2 - ab + b^2$ then $2|a$ and $2|b$.

c) Use a), b) to conclude that if $p = 2$ or p is an odd prime such that -3 is not a square modulo p then pR is a prime ideal. Conclude that pR is maximal.

d) Suppose now p is an odd prime such that -3 is a square modulo p. Prove that pR is not a prime ideal. Conclude that p is not irreducible and $p = a^2 - ab + b^2$ for some integers a, b . Show that the ideal pR is a product of two maximal ideals which are different iff $p \neq 3$. Furthermore, show that if $p \neq 3$ then $p \equiv 1 \pmod{3}$.

e) Prove that every element of R is associated to an element of the form $a+b\omega$ with both a, b non-negative and at least one of a, b even.

f) Suppose now that $p \equiv 1 \pmod{3}$. Prove that -3 is a square modulo p. (Hint: There is an integer whose (multiplicative) order in the group \mathbb{F}_p^{\times} $_p^{\times}$ is 3). Conclude that -3 is a square modulo an odd prime $p > 3$ iff p is a square modulo 3. This is a special case of quadratic reciprocity. (Here \mathbb{F}_p denotes the field $\mathbb{Z}/p\mathbb{Z}$ of order p.)

g) Prove that a natural number *n* is of the form $a^2 + 3b^2$ iff every prime divisor of n which is $\equiv 2 \pmod{3}$ appears in n to an even power.

Problem 4. Let d be a square-free integer.

a) Prove that every non-zero ideal of S_d is a product of maximal ideals in a unique (up to order) way.

Hint. Uniqueness is easy. For existence assume that the result is false and choose an ideal I maximal among those which are not products of maximal ideals (why does I exist?). Now I is contained in a maximal ideal P. Recall that there is unique prime number p in P and either $P = pS_d$ or $PQ = pS_d$ for some maximal ideal Q. If $I \subseteq pS_d$, consider the ideal $(1/p)I$ (why is it an ideal?). Otherwise consider the ideal $(1/p)IQ$ and prove that it strictly contains I. Proving that $IQ = pI$ is not

possible may require some thought (but it is a short argument).

b) Let I be and ideal of S_d . Show that $I^* = \{a : a^* \in I\}$ is also an ideal in S_d and II^* is principal.

Problem 5. a) Let R be a subring of a field F such that any $s \in F$ is of the form r_1/r_2 for some $r_1, r_2 \in R$. Suppose that there is $s \in F$ such that $s \notin R$ and $s^{k} + r_{1}s^{k-1} + r_{2}s^{k-2} + ... + r_{k} = 0$ for some $r_{1},...,r_{k}$ in R. Prove that R is not a UFD.

b) Let R be a subring of S_d (d a square-free integer). Prove that there is a nonnegative integer k such that $R = \{a + kb\omega : a, b \in \mathbb{Z}\}\.$ Show that R is not a UFD if $k > 1$.

Problem 6. Let $d > 1$ be a positive square-free integer.

a) Let $n > 0$ be a natural number. Prove that there are integers m, k such that $0 < k \leq n$ and $|m + k\sqrt{d}| \leq 1/n$.

Hint: Show that two among the numbers $0, \sqrt{d}, 2\sqrt{d}, \ldots, n\sqrt{d}$ have fractional parts which are no more than $1/n$ apart.

b) Show that if m, k are as in a) then $|m^2 - dk^2| \leq 1 + 2\sqrt{d}$.

c) Consider the set $S = \{m + k\sqrt{d} : m, k \text{ are integers and } |m^2 - dk^2| \leq 1 + 2\sqrt{d}\}.$ Prove that S is infinite. Conclude that for some integer M such that $|M| < 1 + 2\sqrt{d}$ the ring S_d has infinitely many elements whose norm is M .

d) Prove that for any integer K the set of ideals of the form aR_d , where a has norm K , is a finite set. Conclude that there are infinitely many elements of norm M in S_d which are pairwise associated. Conclude that the group of units of S_d is infinite.

f) Note that if $u \neq \pm 1$ is a unit of S_d then so are $-u$, $1/u$, $-1/u$ and one of them is bigger than 1. Prove that if $a + b\omega > 1$ is a unit of S_d then a, b are non-negative. Conclude that among the units of S_d which are bigger than one there is the smallest one, which we denote by w and call the *fundamental unit* of S_d .

g) Prove that if w is the fundamental unit of S_d then $S_d^{\times} = {\pm w^k : k \in \mathbb{Z}}$. Conclude that the groups of units of S_d is isomorphic to the group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$.

h) Find the fundamental unit of S_5 .

Remark. Note that our proof of the existence of the fundamental unit (or any nontrivial unit) in S_d is not constructive. There is a simple and very efficient algorithm to compute the fundamental unit which is closely related to the so called continued fraction expansion of the number $\omega - 1$.

Here is a very curious result providing an explicit unit in S_d . Let $D = d$ if $d \equiv 1 \pmod{4}$ and $D = 4d$ otherwise. For an integer m relatively prime to D define

$$
\chi(m) = \begin{cases} \left(\frac{m}{d}\right), \text{ if } d \equiv 1 \mod 4\\ (-1)^{(m-1)/2} \left(\frac{m}{d}\right), \text{ if } d \equiv 3 \mod 4\\ (-1)^{\frac{m^2-1}{8} + \frac{m-1}{2} \frac{a-1}{2}} \left(\frac{m}{a}\right), \text{ if } d = 2a. \end{cases}
$$

Let $A = \prod_a \sin \frac{\pi a}{D}$, where a runs over all integers in the interval $(0, D/2)$ which are relatively prime to D and satisfy $\chi(a) = -1$. Similarly, let $B = \prod_b \sin \frac{\pi b}{D}$, where b runs over all integers in the interval $(0, D/2)$ which are relatively prime to D and satisfy $\chi(b) = 1$. Then $\eta = A/B$ is a unit in S_d and $\eta = w^h$, where w is the fundamental unit and $h > 0$ is an integer called **the class number** of S_d (note that even the fact that $A > B$ is highly non-trivial). S_d is a PID if and only if $h = 1$.