
Homework 2

due on Monday, September 23

Study Chapters 7 and 8 of Dummit and Foote. Solve problem 26 to 7.1, problem

39 to 7.4 and the following problems.

Problem 1. LetR be a unique factorization domain. Let a, b, c be non-zero elements

of R. Prove the following:

1. If c|ab and gcd(a, c) = 1 then c|b.

2. If a|c, b|c, and gcd(a, b) = 1 then ab|c.

3. If gcd(a, c) = 1 = gcd(b, c) then gcd(ab, c) = 1.

4. If c|a and c|b then c gcd(a/c, b/c) = gcd(a, b).

5. If m,n are positive integers then gcd(a, b) = 1 iff gcd(am, bn) = 1.

6. If n is a positive integer and an|bn then a|b.

7. gcd(a, b)lcm(a, b) is associated to ab.

8. gcd(a, b, c) = gcd(a, gcd(b, c)) and lcm(a, b, c) = lcm(a, lcm(b, c)).

Problem 2. Prove that Sd is Euclidean for d = 3, 6, 29. (Show that the absolute

value of the norm can be used as Euclidean norm.)

Hint: Show that if 0 < a < 2 and a 6= 5/4 then for any b there is an integer m such

that |(b−m)2 − a| < 1.

Remark. It can be proved that the absolute value of the norm is an Euclidean

function on Sd iff d = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73. On the other

hand, assuming the Extended Riemann Hypothesis, it was proved that for d > 0

the ring Sd is a UFD iff it is Euclidean. It is a long standing conjecture that there

are infinitely many d > 0 for which Sd is a PID. We proved in class that Sd is a PID

iff the absolute value of the norm is a Dedekind-Hasse function on Sd.

Problem 3. Consider the ring S−3 = R = Z[ω] = {a+ bω : a, b ∈ Z} of Eisenstein

integers, where ω = (−1 +
√
−3)/2 (note that the ω here is slightly different than
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the one used in class, but the ring is the same). Observe that that ω2 + ω + 1 = 0

(so ω3 = 1).

a) Let p be an odd prime such that −3 is not a square modulo p. Prove that if a, b are

integers such that p|a2−ab+b2 then p|a and p|b. Hint. (2a−b)2+3b2 = 4(a2−ab+b2).

b) Prove that if a, b are integers such that 2|a2 − ab+ b2 then 2|a and 2|b.

c) Use a), b) to conclude that if p = 2 or p is an odd prime such that −3 is not a

square modulo p then pR is a prime ideal. Conclude that pR is maximal.

d) Suppose now p is an odd prime such that −3 is a square modulo p. Prove that

pR is not a prime ideal. Conclude that p is not irreducible and p = a2 − ab+ b2 for

some integers a, b. Show that the ideal pR is a product of two maximal ideals which

are different iff p 6= 3. Furthermore, show that if p 6= 3 then p ≡ 1 (mod 3) .

e) Prove that every element of R is associated to an element of the form a+ bω with

both a, b non-negative and at least one of a, b even.

f) Suppose now that p ≡ 1 (mod 3) . Prove that −3 is a square modulo p. (Hint:

There is an integer whose (multiplicative) order in the group F
×

p is 3). Conclude

that −3 is a square modulo an odd prime p > 3 iff p is a square modulo 3. This is

a special case of quadratic reciprocity. (Here Fp denotes the field Z/pZ of order p.)

g) Prove that a natural number n is of the form a2 + 3b2 iff every prime divisor of

n which is ≡ 2 (mod 3) appears in n to an even power.

Problem 4. Let d be a square-free integer.

a) Prove that every non-zero ideal of Sd is a product of maximal ideals in a unique

(up to order) way.

Hint. Uniqueness is easy. For existence assume that the result is false and choose

an ideal I maximal among those which are not products of maximal ideals (why

does I exist?). Now I is contained in a maximal ideal P . Recall that there is unique

prime number p in P and either P = pSd or PQ = pSd for some maximal ideal Q.

If I ⊆ pSd, consider the ideal (1/p)I (why is it an ideal?). Otherwise consider the

ideal (1/p)IQ and prove that it strictly contains I. Proving that IQ = pI is not
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possible may require some thought (but it is a short argument).

b) Let I be and ideal of Sd. Show that I∗ = {a : a∗ ∈ I} is also an ideal in Sd and

II∗ is principal.

Problem 5. a) Let R be a subring of a field F such that any s ∈ F is of the

form r1/r2 for some r1, r2 ∈ R. Suppose that there is s ∈ F such that s 6∈ R and

sk + r1s
k−1 + r2s

k−2 + . . . + rk = 0 for some r1, . . . , rk in R. Prove that R is not a

UFD.

b) Let R be a subring of Sd (d a square-free integer). Prove that there is a non-

negative integer k such that R = {a+ kbω : a, b ∈ Z}. Show that R is not a UFD if

k > 1.

Problem 6. Let d > 1 be a positive square-free integer.

a) Let n > 0 be a natural number. Prove that there are integers m, k such that

0 < k ≤ n and |m+ k
√
d| ≤ 1/n.

Hint: Show that two among the numbers 0,
√
d, 2

√
d, . . . , n

√
d have fractional parts

which are no more than 1/n apart.

b) Show that if m, k are as in a) then |m2 − dk2| ≤ 1 + 2
√
d.

c) Consider the set S = {m + k
√
d : m, k are integers and |m2 − dk2| ≤ 1 + 2

√
d}.

Prove that S is infinite. Conclude that for some integer M such that |M | < 1+2
√
d

the ring Sd has infinitely many elements whose norm is M .

d) Prove that for any integer K the set of ideals of the form aRd, where a has norm

K, is a finite set. Conclude that there are infinitely many elements of norm M in

Sd which are pairwise associated. Conclude that the group of units of Sd is infinite.

f) Note that if u 6= ±1 is a unit of Sd then so are −u, 1/u,−1/u and one of them is

bigger than 1. Prove that if a + bω > 1 is a unit of Sd then a, b are non-negative.

Conclude that among the units of Sd which are bigger than one there is the smallest

one, which we denote by w and call the fundamental unit of Sd.

g) Prove that if w is the fundamental unit of Sd then S×

d = {±wk : k ∈ Z}. Conclude
that the groups of units of Sd is isomorphic to the group Z/2Z× Z.
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h) Find the fundamental unit of S5.

Remark. Note that our proof of the existence of the fundamental unit (or any non-

trivial unit) in Sd is not constructive. There is a simple and very efficient algorithm

to compute the fundamental unit which is closely related to the so called continued

fraction expansion of the number ω − 1.

Here is a very curious result providing an explicit unit in Sd. Let D = d if

d ≡ 1 (mod 4) and D = 4d otherwise. For an integer m relatively prime to D define

χ(m) =



















(

m
d

)

, if d ≡ 1 mod 4

(−1)(m−1)/2
(

m
d

)

, if d ≡ 3 mod 4

(−1)
m

2
−1

8
+m−1

2

a−1

2

(

m
a

)

, if d = 2a.

Let A = Πa sin
πa
D
, where a runs over all integers in the interval (0, D/2) which are

relatively prime to D and satisfy χ(a) = −1. Similarly, let B = Πb sin
πb
D
, where b

runs over all integers in the interval (0, D/2) which are relatively prime to D and

satisfy χ(b) = 1. Then η = A/B is a unit in Sd and η = wh, where w is the

fundamental unit and h > 0 is an integer called the class number of Sd (note that

even the fact that A > B is highly non-trivial). Sd is a PID if and only if h = 1.
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