
BACKGROUND FROM SET THEORY

Nowdyas it is a common approach to build a mathematical theory from a list of

axioms. This in particular applies to set theory, which underlines all mathematical

theories. Most mathematicians use set theory in a “naive” way based on the intuitive

understanding of the notion of a set. However, sometimes a deeper understanding of

the world of sets is necessary and then our intuition may be insufficient. This is why

we need strong fundaments for set theory which are provided by the axioms. For

the list of all axioms and a nice introduction to the methods of modern set theory

we recommend the book by K. Ciesielski [1].

Among the axioms of set theory there is one, called the Axiom of Choice, which

caused a lot of controversy during the developement of set theory but nowdays it is

accepted by the majority of mathematicians:

Axiom of Choice. If the sets Xi, i ∈ I are non-empty then there exists a function

f : I −→
⋃

i∈I Xi such that f(i) ∈ Xi for all i ∈ I.

Intuitively, the axiom says that given any family of non-empty sets we can choose

at once one element from each set. While this is trivial for finite families, the case of

infinite families is much more subtle than what our finite world experience suggests.

Equivalently, the Axiom of Choice says that the product Πi∈IXi of nonempty sets

is nonempty.

One of the reasons for the controversy around the Axiom of Choice is the following

cute and counterintuitive result which can be proved using the axiom of choice:

The Banach-Tarski Paradox. A solid ball B in R
3 can be decomposed into five

pairwise disjoint subsets S1, S2, S3, S4, S5 for which there exist isometries ti of R
3,

i = 1, ..., 5 such that both t1(S1) ∪ t2(S2) and t3(S3) ∪ t4(S4) ∪ t5(S5) are isometric

to B (and the sets t1(S1), . . . , t5(S5) are pairwise disjoint).

In other words, we from a ball we can build two identical to it balls! One can

prove even more surprising result, called the Strong Banach-Tarski Paradox:
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Strong Banach-Tarski Paradox. Given any two bounded sets A and B in R
3,

each having nonempty interior, one can decompose A into a finite number of pieces

and rearrange them by rigit motions to form B.

More about such paradoxical decompositions and their connections with group

theory can be found in the beautifull book by Stan Wagon [2]

Let us note that A. Tarski proved in 1924 that the Axiom of Choice is equivalent

to the following commonly used statement:

For any infinite set X there is a bijection from X onto X ×X.

There are two other statements equivalent to the Axiom of Choice, which have

numerous important applications. Before we formulate them we need to recall some

basic concepts about ordered sets.

Definition 1. An ordering (or partial ordering) of a set X is a binary relation

≤ on X such that:

• x ≤ x for all x ∈ X;

• if x ≤ y and y ≤ x then x = y;

• if x ≤ y and y ≤ z then x ≤ z.

We write x < y if x ≤ y and x 6= y.

Definition 2. An ordering ≤ on a set X is called linear (or total) if for any two

elements x, y ∈ X, either x ≤ y or y ≤ x.

For example, the usual order on positive integers is linear, but if we define n ≤ m

iff n divides m, then the resulting order is not linear.

Let (X,≤) be an ordered set and Y a subeset of X. We say that a ∈ Y is a

maximal (minimal) element of Y if for every element y ∈ Y such that a ≤ y

(y ≤ a) we have y = a. We say that a ∈ Y is the largest (smallest) element of

Y if for every y ∈ Y we have y ≤ a (a ≤ y). It is clear that the largest (smallest)

element is unique, if exists, and that it is also a maximal (minimal) element. If Y

is linearly ordered by ≤ then a maximal (minimal) element is automatically largest

(smallest). For example, in the set of all integers larger than 1 ordered by divisibility

all prime numbers are minimal elements. An upper bound (lower bound) of Y

is any element b ∈ X such that y ≤ b (b ≤ y) for all y ∈ Y .
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Definition 3. We say that an ordered set (X,≤) is inductively ordered if every

linearly ordered by ≤ subset of X has an upper bound.

A linearly ordered subset of an ordered set is often called a chain.

The next definition introduces a very important class of orderings.

Definition 4. A well-ordering of a set X is a linear ordering ≤ such that every

nonempty subset of X conatains a smallest element.

For example, the set of positive integers with its natural ordering is well ordered,

but the set of all integers is not.

A well-ordering ≤ of a set X allows us to prove facts about elements of X by the

so-called transfinite induction. This means that if for each x ∈ X we have some

statement P (x) such that

(1) P (a) is true for the smallest element a of X;

(2) for any b ∈ X, if P (x) is true for all x < b then P (b) is true

then P (x) is true for all x ∈ X.

Indeed, if P (x) was false for some x then the set F of all x ∈ X such that P (x)

is false would be a non empty subset of X. But then F has the smallest element

f . Clearly f is not the smallest element of X. This means that P (x) is true for all

x < f , but then it must be true for f , a contradiction.

Note also that for each x ∈ X which is not the largest element of X there is

unique element x∗ which is “the next element after x”, i.e. which is smallest among

all elements larger than x. In general, not every element of X is of the form x∗ for

some x ∈ X. The elements which are not of this form are called limit elements.

The following notion is quite useful when dealing with well ordered sets.

Definition 5. Let (X,≤) be a well ordered set. A subset Y of X is called an initial

segment of X if either Y = X or there is a ∈ X such that Y = {x ∈ X : x < a}.

Now we can state the results equivalent to the Axiom of Choice.

Zermelo’s Lemma. Every non-empty set can be well ordered.

Kuratowski-Zorn Lemma. Every inductively ordered set has a maximal element.
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Theorem 1. The following statements are equivelent:

a) the Kuratowski-Zorn Lemma

b) Zermelo’s Lemma

c) the Axiom of Choice.

Proof: a) =⇒ b) : Let X be a non-empty set. Consider the set WP (X) which

consists of all pairs (Y,≤Y ) such that Y is a nonempty subset of X and ≤Y is a

well-ordering of Y . We define an ordering � on WP (X) by (Y,≤Y ) � (Z,≤Z) iff Y

is an initial segment of Z and the restriction of ≤Z to Y coincides with ≤Y . Let M

be a linearly ordered subset of WP (X). Define a subset Y of X by a ∈ Y iff there is

(Z,≤Z) ∈ M such that a ∈ Z. For a, b ∈ Y set a ≤Y b iff there is (Z,≤Z) ∈ M such

that a, b ∈ Z and a ≤Z b (note that this does not depend on the choice of (Z,≤Z).

The fact that M is linearly ordered implies that ≤Y is a well-ordering of Y . In

fact, let A be a nonempty subset of Y . There is (Z,≤Z) ∈ M such that A ∩ Z 6= ∅.

Set m for the smallest element of A∩Z (it exists since Z is well ordered). We claim

that m is the smallest element in A. In fact, if a ∈ A then there is (Z ′,≤Z′) ∈ M

such that a ∈ Z ′. Now, either Z is an initial segment of Z ′ or Z ′ is an initial segment

of Z. If a ∈ Z then a ∈ Z ∩A, so m ≤Z a by definition of m and therefore m ≤Y a.

If a 6∈ Z then Z is an initial segment of Z ′ and all elements in Z are smaller than a.

In particular, m ≤Z′ a so m ≤Y a.

Note now that (Z,≤Z) � (Y,≤Y ) for all (Z,≤Z) ∈ M . Thus (Y,≤Y ) is an upper

bound of M . Consequently, WP (X) is inductively ordered by � so it has a maximal

element (T,≤T ). If T 6= X, then there is an a ∈ X, a 6∈ T . Define T ′ = T ∪{a} and

extend the order ≤T to T ′ by setting t ≤T ′ a for all t ∈ T . The resulting ordering

≤T ′ of T ′ is a well-ordering and (T,≤T ) ≺ (T ′,≤T ′), a contradiction. Thus T = X,

i.e. X can be well ordered.

b) =⇒ c) : Let Xi, i ∈ I be nonempty sets. The set X =
⋃

i∈I Xi can be well

ordered by ≤. Define f(i) to be the smallest element of Xi.

c) =⇒ a) : Let (X,≤) be an inductively ordered set and suppose that X does not

have maximal elements. Let I be the set of all subsets of X which are well ordered

by ≤ (so the empty set belongs to I). For every i ∈ I define Ui to be the set of

all upper bounds for i which do not belong to i. Since X is inductively ordered, i

has upper bounds in X, and since X has no maximal elements, such upper bounds
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exists outside of i, i.e. each Ui is a nonempty subset of X. By the Axiom of Choice,

there is a function g : I −→ X such that g(i) ∈ Ui for all i ∈ I. Note that if i ∈ I

and c ∈ i then the set ic = {x ∈ i : x < c} also belongs to I. We say that i ∈ I is

good if g(ic) = c for every c ∈ i. For example, for any a ∈ X the sets ∅, {a} and

{a, g({a})} are good. More generally, for any good set i the set i ∪ {g(i)} is also

good.

The main observation is that if i, j are good sets then either i ⊆ j or j ⊆ i. In

fact, if for every x ∈ i we have ix = jy for some y ∈ j, then x = g(ix) = g(jy) = y

so i ⊆ j. Otherwise, there is smallest x ∈ i such that ix 6= jy for all y ∈ j. If a ∈ ix

then ia = jb for some b ∈ j. Applying g yields a = b. Thus ix ⊆ j and ia = ja for

all a ∈ ix. We will show that j = ix. If not, let u ∈ j be smallest such that u 6∈ ix,

so ju ⊆ ix. If a ∈ ix and u < a then u ∈ ja = ia ⊆ ix, a contradiction. Thus a < u

for all a ∈ ix, i.e ix ⊆ ju. We see that ix = ju, a contradiction.

Thus we proved that the good sets are linearly ordered by inclusion. Let j be the

union of all good sets. It is an easy exercise to see that j itself is a good set. But

then j ∪ g(j) is also a good set, which is larger than j, a contradiction. ✷

It is evident from our proof that the hardest implication is c) =⇒ a). This

suggests that in a sense the Kuratowski-Zorn Lemma is “strongest” among all three

results, and in fact it seems to be the most efficient tool for applications. A typical

application of the Kuratowski-Zorn Lemma is in showing that every vector space

over a field has a basis:

Theorem. Any vector space V over a field F has a basis.

Proof: Recall that a basis of V is a subset of V which is linearly idependent and

spans V (we consider the empty subset of V to be linearly independent) Moreover,

for any linearly independent subset A of V , the span S(A) of A is the set of all linear

combinations of vectors in A and if v 6∈ S(A) then A∪{v} is also linearly independent

(in particular, S(∅) = {0}). Thus if A is a maximal linearly independent subset of

V then it is a basis (here maximal is with respect to inclusion). Hence we just

need to show that a maximal linearly independent subsets exist and this is where

the Kuratowski-Zorn Lemma comes to rescue. Consider the set I(V ) of all linearly

independent subsets of V . It is a nonempty set ordered by inclusion. It is easy to
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see that if M is a linearly ordered subset of I(V ) then the union of all members of

M is a linearly independent subset of V which is an upper bound for M . Thus I(V )

is inductively ordered by inclusion, so maximal elements exist in I(V ). ✷

Two other important result (which are actually equivalent to the axiom of choice)

are the following theorems:

• Every unital ring has a maximal ideal.

• Product of any family of compact spaces is compact.
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