Solutions to the Midterm, Math 525

Problem 1. Let R be a commutative ring such that for every a € R there is a natural number n > 1
such that a" = a.

a) Prove that every prime ideal in R is maximal. Hint: What can you say when R is an integral
domain?

b) Prove that the intersection of all prime ideals of R is trivial.

Solution. a) Let P be a prime ideal of R and let 7 : R — R/P be the quotient homomorphism.
Since P is prime, the ring R/P is a domain. Let b € R/P. Since 7 is surjective, we have b = m(a) for
some a € R. We know that a” = a for some n > 1. It follows that

b=m(a)=m(a")=n(a)" =0b".
Thus b(b"~! — 1) = 0. Since R/P is a domain, we conclude that either b = 0 or b"~! = 1. It follows

that if b # 0 then b"~! = 1, so b is invertible. In other words, every non-zero element of R/P is
invertible, so R/P is a field. This means that P is a maximal ideal.

b) By problem 3 d) from Homework 1 we know that the intersection of all prime ideals in a commutative
ring is equal to the nilradical. Let a belong to all prime ideals of R, so a is nilpotent: a™ = 0 for
some m > 0. We also know that a™ = a for some n > 1. It follows that ™" = a for every k > 0. Take
k such that n* > m. Then a = a® = a™a™ =™ = 0. Thus the only element in the intersection of all
prime ideals is 0.

A different argument. We will show that the intersection of all maximal ideals of R is trivial. Since
every maximal ideal is prime, this implies the result (even without using part a)). Suppose that a
belongs to all maximal ideals. Then for every k > 1, a* belongs to all maximal ideals of R. Recall
now that if  is in all maximal ideals, then 1 — u does not belong to any maximal ideal, hence 1 — u
is invertible. Thus 1 — a¥ is invertible for every k > 0. Now there is n > 1 such that a” = a. This
means that a(a”~! — 1) = 0. Since a”~! — 1 is invertible, we see that a = 0.

Problem 2. Let R = Z[/-3] = {a + by/=3 : a,b € Z} (so this ring is a subring of S_3).
a) Define the norm on the ring R and list its key properties.

b) Find all invertible elements in R.

c) Prove that 2, 1 + /=3, 1 — y/=3 are irreducible in R. Conclude that R is not a UFD.

d) Prove that the ideal I =< 2,1+ 1/—3 > of R is not principal and that it is maximal. Prove that
I? = 2I. Is there an n such that I™ is principal?

Solution. a) For any v = a + bv/—3 in R define v* = a — by/—3. It is clear that u* € R and
(u*)* = u. Also, u — u* is an automorphism of the ring R. We define the norm N(u) = uu*. Then
N(a+by/=3) = a®+ 3b%, so the norm is always a non-negative integer. We have N (uw) = N (u)N (w)
for any u,w € R and N(u) = 0 if and only if v = 0.

b) If z,y € R and xy = 1 then N(z)N(y) = N(1) = 1so N(z) = N(y) = 1 (since N(x) is a non-
negative integer for all x € R). Now a? + 3b> = 1 for integers a, b if and only if a = +1 and b = 0.

Thus, both z and y are +1. In other words, the only invertible elements of R are 1 and —1.
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Alternatively, we found in class all 6 invertible elements in S_3 and only 1 belong to R (any element
invertible in R is also invertible in S_3).

c¢) Note that each of the three elements has norm 4. Suppose that one of the elements factors as xy.
Then N(z)N(y) = N(zy) = 4. Recall that N(x), N(y) are positive integers. If N(x) =1 then z = £1
is invertible. Similarly for N(y) = 1. The only other possibility is that N(z) = N(y) = 2. However,
if a® + 3b? = 2 for integers a,b then b = 0 (as otherwise a? + 3b?> > 3b> > 3 > 2) and a? = 2, which
is not possible. In other words, N(z) = 2 is not possible. Thus one of x,y must be invertible. This
proves that each of the three elements is irreducible.

Since +1 are the only invertible elements, no two of the elements 2, 1 ++/—3, 1 —y/—3 are associated
and 4 = 2-2 = (1 —+/-3)(1 + v/—3). Thus 4 has two inequivalent factorizations into irreducible
elements, hence R is not a UF D.

A different argument: (1 —+/—3)(1++/—3) € 2R but neither (1 —+/—3) nor (1++/—3) is in 2R. This
means that 2R is not a prime ideal so 2 is irreducible but not prime. Hence R is not a UF D.

d) Let us start by proving that I2 = 2I. Since 2 € I, clearly 21 C I?. Note that I? is generated by
22, (14 +v/=3)2, and 2(1 + v/=3) Clearly 22 and 2(1 + v/—3) are in 2I and

(1+vV-3)?=-24+2V/-3=2((1++v-3)—2) €2l

Thus all three generators belong to 21, so I2 C 2I. Hence I? = 21, as claimed. Note that this implies
that [ is a proper ideal (as 2R # R).

If I was principal, we would have I = xR for some z € R, and therefore 2R = (2x)R. This means
that 22 and 2z are associated, i.e. 22 = 42z. Since R is a domain and 2 # 0, we conclude that
xr = +£2 and I = 2R, which is clearly false. This shows that I is not principal.

Another argument: if I = xR was principal, then x would divide 2. But 2 is irreducible, so 2 and x
would be associated and consequently I = 2R, which is false.

Note that a straightforward induction shows that I™ = 2"~'J for all n. Since I is not principal, I" is
not principal for all n > 0 (a simple exercise: if R is a domain, a # 0 and [ is an ideal such that al is
principal then [ is principal).

Recall that the additive group of R is Z @ Z. Thus R/2R has 4 elements. Since I strictly contains
2R, R/I has 2 elements. Thus R/I must be the field Z/2Z, so I is maximal.

Alternatively, note that 1 + 1 =+/—3+1, so (a +bv/—3) +I = (a+b) + I which is I if a + b is even
and 14 I if a + b is odd. Thus R/I has 2 elements, and therefore it is the field Z/27Z.

Problem 3. a) State Eisenstein criterion.

b) Prove that the polynomial f = 2232917 4+ 22017y 4 22 — 4 — 1 is a prime element in the ring Q[z, y].

Hint: Consider f as a polynomial in R[y|, where R = Q|x].

Solution. a) Eisenstein Criterion. Let f(z) = fo+ fix+. ..+ fox™ be a polynomial in R[z], where R
is an integral domain. Suppose that there is a prime ideal P of R such that f, & P, fo, f1,---, fn-1 € P
and fo & P%2. Then if f = gh for some g,h € R[z], then one of g, h is constant.

We have f = 2%¢y?°'7 4+ (2217 — 1)y + (22 — 1) € R[y]. Not that R = Q[z] is a PID, hence a UFD. It
follows that R[y] is a UF D, so it suffices to show that f is irreducible in R[y] (in UFD’s irreducible
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elements are prime). We will use the Eisenstein criterion. Note that P = (1 — z)R is a prime ideal
of R as 1 — 2 € R is irreducible in R (hence prime). Note that 22 ¢ P, all the other coefficients of f
are in P (as 1 — x divides both 2?17 — 1 and 2? — 1) and 22 — 1 is not in P? (as (z — 1)? does not
divide 22 — 1). By Eisenstein criterion, if f = gh for some g,h € R[y| then one of g, h is in R (i.e.
is constant as a polynomial in y). Since f is primitive (i.e. ged(z?, 22917 — 1,22 — 1) = 1 in R), this
constant must be invertible in R. This proves that f is irreducible.

Problem 4. Let R be a PID and let I, J be proper ideals of R.

a) Prove that the intersection of all the ideals I, n = 1,2, ..., is trivial (this is true, but much harder
to prove, for any Noetherian integral domain and any ideal I).

b) Prove that if J # {0} then (02, (J + I") = J + I* for some k.

Solution. a) Since R is a PID, I = aR is principal. We may assume a # 0 (otherwise the result is
clear). Let b € (22, I" so b € I" = a™R for every n. This means that b = a"w,, for some w, € R.
Suppose that b £ 0. Then w,, # 0 for all n. Since R is a UF D, a is a product of k irreducible elements
for some k£ > 1. Thus b = a™w, is a product of at least nk irreducible elements. Since n is arbitrary, b
has many factorizations into irreducible elements, a contradiction (for every m there is a factorization
of b with more than m irreducible factors).

Alternatively, note that aw,y+1 = wy. It follows that w1 R C woR C w3R.... Since R is Noetherian
(or has ACCP), we must have wiy1 R = wiR for some k, which implies that awg 1R = wi1R. It
follows that a is invertible, a contradiction. This argument actually shows the result in a more general
situation, when R is an integral domain with ACCP and I is principal.

Yet another argument is based on the following observation we proved in class: if R is a PID and
K is a non-zero ideal of R then R has only finitely many ideals containing K. Note that "t C "
for every n (as "' R = a"R would imply that a” = a"*!r, i.e. 1 = ar, so a would be invertible).
So if the intersection K = (1,2, I" was nontrivial, we would have infinitely many different ideals I",
n=1,2,... all containing K, a contradiction.

b) We proved in class that if R is a PID and J is a non-zero ideal of R then R has only finitely
many ideals containing .J. Note that J +1 2 J + I?>2J4+I132...DJisa descending chain of
ideals containing J. The finiteness of the set of ideals containing J implies that J + I¥ = J 4 IF+1 =
J+ 12 = .. for some k and therefore (\°°,(J + I") = J + I*.

Another way is to show first that in a UF D, given any two non-zero elements a,b there is k such
that ged(b,a®) = ged(b, ') = ged(b,a**?).... In a PID, when I = aR and J = bR, we have
J + I = ged(b, a™)R, so the result follows.

Problem 5. Let R be a ring which contains a left ideal I minimal among all non-zero left ideals.
Suppose that I? # 0.

a) Prove that Ra =1 for alla € I, a # 0.
b) Prove that if a € I then either Ja = I or Ia = {0}.

c¢) Prove that there is @ € I such that Ia = I. Prove that for any such a the map I — I given by
x +— xa is bijective.
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d) Let a be as in ¢). Prove that there is an element e € I such that e = e and ea = a. Conclude that
I = Re.

e) Show that ReN R(1 —e) = {0} and R = Re + R(1 —e).

Solution. a) Since a € I and I is a left ideal, we have Ra C I. Since Ra is a left ideal and I is
minimal, we have either Ra = I or Ra = {0}. The latter is not possible, as a € Ra and a # 0. Thus
I = Ra.

b) Note that if J is a left ideal in R and b € R then Jb is also a left ideal in R. Indeed, if ib, jb are
elements of Jb (i,j € J) and r € R, then ib+ jb= (i + j)b € Jb (as i+ j € J) and r(ib) = (ri)b € Jb
(as i e J).

We see that Ia is a left ideal contained in I so either Ia = I or Ia = {0}.

c¢) If Ia = {0} for all a € I (i.e. xza = 0 for any ,a € I), then I? = 0 contrary to our assumption.
Thus there is an a such that Ia # {0}, and then Ia = I by part b).

Suppose that Ta = I. Consider the map f: I — I, f(x) = xza. This is a homomorphism of groups.
Since I = Ia, this homomorphism is clearly surjective. Let K be the kernel of f. We claim that K
is a left ideal. Indeed, K is a (additive) subgroup of I and if u € K and r € R then ru € I and
f(ru) = (ru)a = r(ua) = 0, proving that ru € K. Thus K is a left ideal containing in I, so K = I or
K = {0}. In the former case, f = 0 and therefore I = 0, which is false. Thus K = {0}. This means
that f is injective. We showed that f is both injective and surjective, so it is a bijection.

d) Since f in part c) is bijective, we have a = f(e) = ea for some e € I. Now e?a = e(ea) = ea = a so
f(e) = f(€?), hence e = 2. Clearly e # 0 (as a # 0), so I = Re by part a).

d) Suppose that © € ReN R(1 —e). Then z = re = s(1 — e) for some r,s € R. We see that
re = (re)e = r(e?) = re = x. On the other hand, re = s(1 — e)e = s(e — €?) = 0. This proves that
x = 0. It follows that Re N R(1 —e) = {0}.

For any r € R we have r =re+r(1 —e) € Re+ R(1 —e). Thus R = Re + R(1 — e). This means that
R is a direct sum R = I @ J of left ideals, where J = R(1 — e).

Problem 6. Let R be a commutative ring and I =< a,b > be an ideal of R generated by two elements
a,b and such that I? = I.

a) Show that every element of I is of the form ia + jb for some i, j € I.

b) Suppose that p,q,s,t € R are such that pa + ¢b = 0 and sa + tb = 0. Show that (pt — sq)a =0 =
(pt — sq)b (one way to approach it is by using 2 x 2 matrices).

c) Use a) and b) to show that there is e € I such that (1 —e)a=0= (1 —e)b.

d) Show that e = e and I = Re (hint: what is (1 — e)I?). Conclude that I is a unital ring and
J = R(1 —e) is also a unital ring and R =1 J.

e) (Optional for extra credit) Prove ¢) when you only know that I is finitely generated.

Solution. a) We will show first that if I =< ay,...,ax > is a finitely generated ideal and J is any
ideal then every element of JI = IJ is of the form jia; + ... + jpag for some ji,...,j5r € J. In
fact, every element x of I.J is of the form x = i1t; + t9to + ... + iyt for some iq,...,%, € I and
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t1,...,tm € J. Now, for every n, i, = ryp1a1 + rp 202 + ... + 1y pag for some ry,1,...,7, 5 € R. Thus
m k m k
T = E <§ rn,lal)tn = E aj E Tpitn = E Jiag,
n=1 (=1 I=1 n=1 =1

where j; = > rpty € J for 1 =1,2,..., k. This proves our claim.
Applying our observation to I =< a,b > and J = I, we see that every element of I? is of the form
ia + jb for some i, j € I. Part a) follows now from the assumption that I = I?.

t —
b) Let A = [i (tl} and v = [Z} Then our assumption is Av = 0. Now take B = [—s pq} Then
pt—sq O . pt—sq 0 a 0
BA = { 0 pt—sq]’ Now (BA)v = B(Av) = B0 = 0, i.e. [ 0 pt—sq} {b} = [O ,

which is exactly what we are asked to prove.
A more direct argument (which is not that useful for answering part e)) is to note that 0 = t(pa +
gb) — q(sa+tb) = (pt — sq)a and 0 = p(sa + tb) — s(pa + qb) = (pt — sq)b.

c) By part a), we can write a = i1a + j1b and b = iga + j2b for some i1, 19, j1,j2 € I. In other words,
(il — 1)(1—|—j1b =0= ’iQCL—I—(jQ — 1)b Note that (il — 1)(j2 — 1) —J1ia =1— (]2 4114 J122 —jQil) =1—e,
where e = jo + i1 + j1io — joi1 € I. By part b) we have (1 —e)a=0= (1 —e)b.

d) Since every element z in I is of the form ria + rob for some ri,79 € R, we see from c) that
(1 —e)xr = 0. In other words x = ex = ze for all x € I. Thus I C Re. Since e € I, we have
(1 —e)e =0, ie. e =e% Since I is an ideal and e € I, we have Re C I. Tt follows that I = Re
and e € [ serves as the identity for multiplication in I: if ¢ € I then ¢ = re for some r € R and
ie = (re)e = re? = re = i. Thus I is a unital ring (the only thing potentially missing for an ideal to
be a unital ring is the identity for multiplication). Note that (1 —e)(1 —e) =1 —e so 1 — e is the
identity for multiplication within the ideal J = R(1 —e). Now = = xe + z(1 —e) for all x € R so
R=1+4J. Finally,ifue INJ then eu =uwand u = (1 —e)u = u—eu =0, so I NJ = {0}. This
shows that R =1® J.

e) We are assuming that I is a finitely generated ideal such that I? = I and we want to prove that
(1—e)I =0 for some e € I. Let [ =< ay,...a, >. Using part a), we see that

ap = 1101 + g 202 + ...+ i pan

for some isy € I, 1 < s <n,1 <t <n Let Abe the n x n matrix whose (s,t)-entry is i5;. Then
(I, — A)v = 0, where v is the column vector (a1, ...,a,) and I, is the n x n identity matrix.

We need now some facts about determinants. The determinant of a matrix is a polynomial expression
in the entries of the matrix and it makes sense over any commutative ring. If f : R — S is a ring
homomorphism then det(f(D)) = f(det(D)) for any square matrix D, where f(D) is obtained from
D by applying f to every entry of D. Moreover, for every matrix A there is a matrix B (with entries
in R) such that BA = AB = det(A)I, (the s,t-entry of B is (—1)5*" times the determinant of the
matrix obtained from A by removing its ¢-th row and s-th column). The matrix B is usually denoted
by AP and called the adjoint matrix of A.

Returning to our problem, note that det(l, — A) = 1 — e for some e € I. Indeed, the natural
homomorphism R — R/I takes I,, — A to the identity matrix, so it takes det(I, — A) to 1. This
means that det(I, —A) = 1—e for some e € I. Now 0 = (I,,— A)P((I,,— A)v) = ((I,— A)P(I,— A))v =
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det(I, — A)v = (1 — e)v. This means that (1—e)a; =0fori=1,...,n,ie. (1—e)l =0. Now we can
repeat part d) to conclude that e? = e and I = Re.

Problem 7. Let R be a commutative ring.

a) Let @ € R and let M be an ideal of R. Show that the set J = {r € R : ra € M} is an ideal
containing M.

b) Let F be the set of all ideals of R which are not finitely generated. Suppose that F is not empty.
Prove that it contains maximal elements (with respect to inclusion).

c) Let M be a maximal element of F and let a ¢ M. Show that M = N + Ja for some finitely
generated ideal N contained in M, where J is the ideal from part a). Hint: what can you say about
the ideal M + Ra? Conclude that J = M. Conclude that M is a prime ideal.

Solution. a) Let s,t € J. Then sa € M and ta € M, so sa+ta = (s+t)a € M and s+t € J. Thus
J is closed under addition. Clearly 0 € J as 0-a = 0 € M. Finally, since sa € M, for any r € R we
have r(sa) € M, i.e. (rs)a € M, sors € M. This is all we need to verify that J is an ideal. Clearly if
m € M then am = ma € M so m € J. Thus M is contained in J.

b) We will use Zorn’s Lemma. If A is a subset of F which is a chain then consider the union K
of all the ideals in /. We know that K is an ideal. We need to check that K is in F. Then K
will be an upper bound for our chain. Well, if K was not in F, then K would be finitely generated:
K =< ai,...,a;, >. As K is the union of our chain, there are ideals M; € N such that a; € M,;.
Since these ideals come from a chain, one of them contains all the others. Thus, for some j we have
ai,...,am € Mj. It follows that K =< ay,...,a, >C M; C K, i.e. K = M; is finitely generated, a
contradiction. Thus K is in F, i.e. every chain in F has an upper bound in /. By Zorn’s Lemma, F
contains maximal elements.

c) Since a ¢ M, the ideal M + Ra strictly contains M. Since M is maximal in F, the ideal M + Ra is
not in F. Thus M + Ra is finitely generated. Let mi + t1a, ms + toa, ..., myg + tra be generators of
M + Ra, where mqy,...,mp € M and t1,...,t; € R. Let N be the ideal generated by mq,..., mg, so
N C M and N is finitely generated. We claim that M + Ra = N + Ra. Since N C M, the inclusion
N+ Ra C M+ Ra is clear. On the other hand, every generator m; +t;a of M + Ra belongs to N + Ra,
so M + Ra C N + Ra.

In particular, M C N + Ra. Take m € M, so m = n + ta for some n € N and t € R. Since
ta=m-—-né€ M, wehavet € J,som € N + Ja. Thus M C N + Ja. On the other hand, both N
and Ja are contained in M, so N + Ja C M. Hence M = N + Ja. We know from a) that J contains
M. If J was strictly larger than M then J would not be in F, i.e. J would be finitely generated:
J =< ji,...,jn >. But then the elements ms + j:a with 1 < s < k and 1 < ¢t < n would generate
N + Ja = M, contrary to the fact that M is not finitely generated. This shows that J = M. Thus if
ba € M then b € M.

We showed that for any element a not in M, if ba € M for some b € R then b € M. This means that
M is a prime ideal.

We have established the following result:

Theorem. If R is a commutative ring in which every prime ideal is finitely generated then R is
Noetherian.
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Indeed, if R was not Noetherian, the set F would be non-empty but then it would contain a prime
ideal, which would not be finitely generated.



