
Solutions to the Midterm, Math 525

Problem 1. Let R be a commutative ring such that for every a ∈ R there is a natural number n > 1
such that an = a.

a) Prove that every prime ideal in R is maximal. Hint: What can you say when R is an integral
domain?

b) Prove that the intersection of all prime ideals of R is trivial.

Solution. a) Let P be a prime ideal of R and let π : R −→ R/P be the quotient homomorphism.
Since P is prime, the ring R/P is a domain. Let b ∈ R/P . Since π is surjective, we have b = π(a) for
some a ∈ R. We know that an = a for some n > 1. It follows that

b = π(a) = π(an) = π(a)n = bn.

Thus b(bn−1 − 1) = 0. Since R/P is a domain, we conclude that either b = 0 or bn−1 = 1. It follows
that if b 6= 0 then bn−1 = 1, so b is invertible. In other words, every non-zero element of R/P is
invertible, so R/P is a field. This means that P is a maximal ideal.

b) By problem 3 d) from Homework 1 we know that the intersection of all prime ideals in a commutative
ring is equal to the nilradical. Let a belong to all prime ideals of R, so a is nilpotent: am = 0 for

some m > 0. We also know that an = a for some n > 1. It follows that an
k

= a for every k > 0. Take

k such that nk > m. Then a = an
k

= aman
k
−m = 0. Thus the only element in the intersection of all

prime ideals is 0.

A different argument. We will show that the intersection of all maximal ideals of R is trivial. Since
every maximal ideal is prime, this implies the result (even without using part a)). Suppose that a
belongs to all maximal ideals. Then for every k ≥ 1, ak belongs to all maximal ideals of R. Recall
now that if u is in all maximal ideals, then 1− u does not belong to any maximal ideal, hence 1− u
is invertible. Thus 1 − ak is invertible for every k > 0. Now there is n > 1 such that an = a. This
means that a(an−1 − 1) = 0. Since an−1 − 1 is invertible, we see that a = 0.

Problem 2. Let R = Z[
√
−3] = {a+ b

√
−3 : a, b ∈ Z} (so this ring is a subring of S−3).

a) Define the norm on the ring R and list its key properties.

b) Find all invertible elements in R.

c) Prove that 2, 1 +
√
−3, 1−

√
−3 are irreducible in R. Conclude that R is not a UFD.

d) Prove that the ideal I =< 2, 1 +
√
−3 > of R is not principal and that it is maximal. Prove that

I2 = 2I. Is there an n such that In is principal?

Solution. a) For any u = a + b
√
−3 in R define u∗ = a − b

√
−3. It is clear that u∗ ∈ R and

(u∗)∗ = u. Also, u 7→ u∗ is an automorphism of the ring R. We define the norm N(u) = uu∗. Then
N(a+ b

√
−3) = a2+3b2, so the norm is always a non-negative integer. We have N(uw) = N(u)N(w)

for any u,w ∈ R and N(u) = 0 if and only if u = 0.

b) If x, y ∈ R and xy = 1 then N(x)N(y) = N(1) = 1 so N(x) = N(y) = 1 (since N(x) is a non-
negative integer for all x ∈ R). Now a2 + 3b2 = 1 for integers a, b if and only if a = ±1 and b = 0.
Thus, both x and y are ±1. In other words, the only invertible elements of R are 1 and −1.
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Alternatively, we found in class all 6 invertible elements in S−3 and only ±1 belong to R (any element
invertible in R is also invertible in S−3).

c) Note that each of the three elements has norm 4. Suppose that one of the elements factors as xy.
Then N(x)N(y) = N(xy) = 4. Recall that N(x), N(y) are positive integers. If N(x) = 1 then x = ±1
is invertible. Similarly for N(y) = 1. The only other possibility is that N(x) = N(y) = 2. However,
if a2 + 3b2 = 2 for integers a, b then b = 0 (as otherwise a2 + 3b2 ≥ 3b3 ≥ 3 > 2) and a2 = 2, which
is not possible. In other words, N(x) = 2 is not possible. Thus one of x, y must be invertible. This
proves that each of the three elements is irreducible.

Since ±1 are the only invertible elements, no two of the elements 2, 1 +
√
−3, 1−

√
−3 are associated

and 4 = 2 · 2 = (1 −
√
−3)(1 +

√
−3). Thus 4 has two inequivalent factorizations into irreducible

elements, hence R is not a UFD.

A different argument: (1−
√
−3)(1+

√
−3) ∈ 2R but neither (1−

√
−3) nor (1+

√
−3) is in 2R. This

means that 2R is not a prime ideal so 2 is irreducible but not prime. Hence R is not a UFD.

d) Let us start by proving that I2 = 2I. Since 2 ∈ I, clearly 2I ⊆ I2. Note that I2 is generated by
22, (1 +

√
−3)2, and 2(1 +

√
−3) Clearly 22 and 2(1 +

√
−3) are in 2I and

(1 +
√
−3)2 = −2 + 2

√
−3 = 2((1 +

√
−3)− 2) ∈ 2I.

Thus all three generators belong to 2I, so I2 ⊆ 2I. Hence I2 = 2I, as claimed. Note that this implies
that I is a proper ideal (as 2R 6= R).

If I was principal, we would have I = xR for some x ∈ R, and therefore x2R = (2x)R. This means
that x2 and 2x are associated, i.e. x2 = ±2x. Since R is a domain and x 6= 0, we conclude that
x = ±2 and I = 2R, which is clearly false. This shows that I is not principal.

Another argument: if I = xR was principal, then x would divide 2. But 2 is irreducible, so 2 and x
would be associated and consequently I = 2R, which is false.

Note that a straightforward induction shows that In = 2n−1I for all n. Since I is not principal, In is
not principal for all n > 0 (a simple exercise: if R is a domain, a 6= 0 and I is an ideal such that aI is
principal then I is principal).

Recall that the additive group of R is Z ⊕ Z. Thus R/2R has 4 elements. Since I strictly contains
2R, R/I has 2 elements. Thus R/I must be the field Z/2Z, so I is maximal.

Alternatively, note that 1 + I =
√
−3 + I, so (a+ b

√
−3) + I = (a+ b) + I which is I if a+ b is even

and 1 + I if a+ b is odd. Thus R/I has 2 elements, and therefore it is the field Z/2Z.

Problem 3. a) State Eisenstein criterion.

b) Prove that the polynomial f = x2y2017 + x2017y+ x2 − y− 1 is a prime element in the ring Q[x, y].
Hint: Consider f as a polynomial in R[y], where R = Q[x].

Solution. a) Eisenstein Criterion. Let f(x) = f0+f1x+. . .+fnx
n be a polynomial in R[x], where R

is an integral domain. Suppose that there is a prime ideal P of R such that fn 6∈ P , f0, f1, . . . , fn−1 ∈ P
and f0 6∈ P 2. Then if f = gh for some g, h ∈ R[x], then one of g, h is constant.

We have f = x2y2017 + (x2017 − 1)y + (x2 − 1) ∈ R[y]. Not that R = Q[x] is a PID, hence a UFD. It
follows that R[y] is a UFD, so it suffices to show that f is irreducible in R[y] (in UFD’s irreducible
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elements are prime). We will use the Eisenstein criterion. Note that P = (1 − x)R is a prime ideal
of R as 1− x ∈ R is irreducible in R (hence prime). Note that x2 6∈ P , all the other coefficients of f
are in P (as 1 − x divides both x2017 − 1 and x2 − 1) and x2 − 1 is not in P 2 (as (x − 1)2 does not
divide x2 − 1). By Eisenstein criterion, if f = gh for some g, h ∈ R[y] then one of g, h is in R (i.e.
is constant as a polynomial in y). Since f is primitive (i.e. gcd(x2, x2017 − 1, x2 − 1) = 1 in R), this
constant must be invertible in R. This proves that f is irreducible.

Problem 4. Let R be a PID and let I, J be proper ideals of R.

a) Prove that the intersection of all the ideals In, n = 1, 2, . . ., is trivial (this is true, but much harder
to prove, for any Noetherian integral domain and any ideal I).

b) Prove that if J 6= {0} then
⋂

∞

n=1
(J + In) = J + Ik for some k.

Solution. a) Since R is a PID, I = aR is principal. We may assume a 6= 0 (otherwise the result is
clear). Let b ∈ ⋂

∞

n=1
In so b ∈ In = anR for every n. This means that b = anwn for some wn ∈ R.

Suppose that b 6= 0. Then wn 6= 0 for all n. Since R is a UFD, a is a product of k irreducible elements
for some k ≥ 1. Thus b = anwn is a product of at least nk irreducible elements. Since n is arbitrary, b
has many factorizations into irreducible elements, a contradiction (for every m there is a factorization
of b with more than m irreducible factors).

Alternatively, note that awn+1 = wn. It follows that w1R ⊆ w2R ⊆ w3R . . .. Since R is Noetherian
(or has ACCP), we must have wk+1R = wkR for some k, which implies that awk+1R = wk+1R. It
follows that a is invertible, a contradiction. This argument actually shows the result in a more general
situation, when R is an integral domain with ACCP and I is principal.

Yet another argument is based on the following observation we proved in class: if R is a PID and
K is a non-zero ideal of R then R has only finitely many ideals containing K. Note that In+1 ( In

for every n (as an+1R = anR would imply that an = an+1r, i.e. 1 = ar, so a would be invertible).
So if the intersection K =

⋂

∞

n=1
In was nontrivial, we would have infinitely many different ideals In,

n = 1, 2, . . . all containing K, a contradiction.

b) We proved in class that if R is a PID and J is a non-zero ideal of R then R has only finitely
many ideals containing J . Note that J + I ⊇ J + I2 ⊇ J + I3 ⊇ . . . ⊇ J is a descending chain of
ideals containing J . The finiteness of the set of ideals containing J implies that J + Ik = J + Ik+1 =
J + Ik+2 = . . . for some k and therefore

⋂

∞

n=1
(J + In) = J + Ik.

Another way is to show first that in a UFD, given any two non-zero elements a, b there is k such
that gcd(b, ak) = gcd(b, ak+1) = gcd(b, ak+2) . . .. In a PID, when I = aR and J = bR, we have
J + In = gcd(b, an)R, so the result follows.

Problem 5. Let R be a ring which contains a left ideal I minimal among all non-zero left ideals.
Suppose that I2 6= 0.

a) Prove that Ra = I for all a ∈ I, a 6= 0.

b) Prove that if a ∈ I then either Ia = I or Ia = {0}.

c) Prove that there is a ∈ I such that Ia = I. Prove that for any such a the map I −→ I given by
x 7→ xa is bijective.
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d) Let a be as in c). Prove that there is an element e ∈ I such that e2 = e and ea = a. Conclude that
I = Re.

e) Show that Re ∩R(1− e) = {0} and R = Re+R(1− e).

Solution. a) Since a ∈ I and I is a left ideal, we have Ra ⊆ I. Since Ra is a left ideal and I is
minimal, we have either Ra = I or Ra = {0}. The latter is not possible, as a ∈ Ra and a 6= 0. Thus
I = Ra.

b) Note that if J is a left ideal in R and b ∈ R then Jb is also a left ideal in R. Indeed, if ib, jb are
elements of Jb (i, j ∈ J) and r ∈ R, then ib+ jb = (i+ j)b ∈ Jb (as i+ j ∈ J) and r(ib) = (ri)b ∈ Jb
(as ri ∈ J).
We see that Ia is a left ideal contained in I so either Ia = I or Ia = {0}.

c) If Ia = {0} for all a ∈ I (i.e. xa = 0 for any x, a ∈ I), then I2 = 0 contrary to our assumption.
Thus there is an a such that Ia 6= {0}, and then Ia = I by part b).

Suppose that Ia = I. Consider the map f : I −→ I, f(x) = xa. This is a homomorphism of groups.
Since I = Ia, this homomorphism is clearly surjective. Let K be the kernel of f . We claim that K
is a left ideal. Indeed, K is a (additive) subgroup of I and if u ∈ K and r ∈ R then ru ∈ I and
f(ru) = (ru)a = r(ua) = 0, proving that ru ∈ K. Thus K is a left ideal containing in I, so K = I or
K = {0}. In the former case, f = 0 and therefore I = 0, which is false. Thus K = {0}. This means
that f is injective. We showed that f is both injective and surjective, so it is a bijection.

d) Since f in part c) is bijective, we have a = f(e) = ea for some e ∈ I. Now e2a = e(ea) = ea = a so
f(e) = f(e2), hence e = e2. Clearly e 6= 0 (as a 6= 0), so I = Re by part a).

d) Suppose that x ∈ Re ∩ R(1 − e). Then x = re = s(1 − e) for some r, s ∈ R. We see that
xe = (re)e = r(e2) = re = x. On the other hand, xe = s(1 − e)e = s(e − e2) = 0. This proves that
x = 0. It follows that Re ∩R(1− e) = {0}.
For any r ∈ R we have r = re+ r(1− e) ∈ Re+R(1− e). Thus R = Re+R(1− e). This means that
R is a direct sum R = I ⊕ J of left ideals, where J = R(1− e).

Problem 6. Let R be a commutative ring and I =< a, b > be an ideal of R generated by two elements
a, b and such that I2 = I.

a) Show that every element of I is of the form ia+ jb for some i, j ∈ I.

b) Suppose that p, q, s, t ∈ R are such that pa+ qb = 0 and sa+ tb = 0. Show that (pt− sq)a = 0 =
(pt− sq)b (one way to approach it is by using 2× 2 matrices).

c) Use a) and b) to show that there is e ∈ I such that (1− e)a = 0 = (1− e)b.

d) Show that e2 = e and I = Re (hint: what is (1 − e)I?). Conclude that I is a unital ring and
J = R(1− e) is also a unital ring and R = I ⊕ J .

e) (Optional for extra credit) Prove c) when you only know that I is finitely generated.

Solution. a) We will show first that if I =< a1, . . . , ak > is a finitely generated ideal and J is any
ideal then every element of JI = IJ is of the form j1a1 + . . . + jkak for some j1, . . . , jk ∈ J . In
fact, every element x of IJ is of the form x = i1t1 + i2t2 + . . . + imtm for some i1, . . . , im ∈ I and
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t1, . . . , tm ∈ J . Now, for every n, in = rn,1a1 + rn,2a2 + . . .+ rn,kak for some rn,1, . . . , rn,k ∈ R. Thus

x =

m
∑

n=1

(

k
∑

l=1

rn,lal)tn =

k
∑

l=1

al

m
∑

n=1

rn,ltn =

k
∑

l=1

jlal,

where jl =
∑m

n=1
rn,ltn ∈ J for l = 1, 2, . . . , k. This proves our claim.

Applying our observation to I =< a, b > and J = I, we see that every element of I2 is of the form
ia+ jb for some i, j ∈ I. Part a) follows now from the assumption that I = I2.

b) Let A =

[

p q

s t

]

and v =

[

a

b

]

. Then our assumption is Av = 0. Now take B =

[

t −q

−s p

]

. Then

BA =

[

pt− sq 0

0 pt− sq

]

. Now (BA)v = B(Av) = B0 = 0, i.e.

[

pt− sq 0

0 pt− sq

] [

a

b

]

=

[

0
0

]

,

which is exactly what we are asked to prove.
A more direct argument (which is not that useful for answering part e)) is to note that 0 = t(pa +
qb)− q(sa+ tb) = (pt− sq)a and 0 = p(sa+ tb)− s(pa+ qb) = (pt− sq)b.

c) By part a), we can write a = i1a+ j1b and b = i2a+ j2b for some i1, i2, j1, j2 ∈ I. In other words,
(i1−1)a+j1b = 0 = i2a+(j2−1)b. Note that (i1−1)(j2−1)−j1i2 = 1− (j2+ i1+j1i2−j2i1) = 1−e,
where e = j2 + i1 + j1i2 − j2i1 ∈ I. By part b) we have (1− e)a = 0 = (1− e)b.

d) Since every element x in I is of the form r1a + r2b for some r1, r2 ∈ R, we see from c) that
(1 − e)x = 0. In other words x = ex = xe for all x ∈ I. Thus I ⊆ Re. Since e ∈ I, we have
(1 − e)e = 0, i.e. e = e2. Since I is an ideal and e ∈ I, we have Re ⊆ I. It follows that I = Re
and e ∈ I serves as the identity for multiplication in I: if i ∈ I then i = re for some r ∈ R and
ie = (re)e = re2 = re = i. Thus I is a unital ring (the only thing potentially missing for an ideal to
be a unital ring is the identity for multiplication). Note that (1 − e)(1 − e) = 1 − e so 1 − e is the
identity for multiplication within the ideal J = R(1 − e). Now x = xe + x(1 − e) for all x ∈ R so
R = I + J . Finally, if u ∈ I ∩ J then eu = u and u = (1 − e)u = u − eu = 0, so I ∩ J = {0}. This
shows that R = I ⊕ J .

e) We are assuming that I is a finitely generated ideal such that I2 = I and we want to prove that
(1− e)I = 0 for some e ∈ I. Let I =< a1, . . . an >. Using part a), we see that

ak = ik,1a1 + ik,2a2 + . . .+ ik,nan

for some is,t ∈ I, 1 ≤ s ≤ n, 1 ≤ t ≤ n. Let A be the n × n matrix whose (s, t)-entry is is,t. Then
(In −A)v = 0, where v is the column vector (a1, . . . , an) and In is the n× n identity matrix.

We need now some facts about determinants. The determinant of a matrix is a polynomial expression
in the entries of the matrix and it makes sense over any commutative ring. If f : R −→ S is a ring
homomorphism then det(f(D)) = f(det(D)) for any square matrix D, where f(D) is obtained from
D by applying f to every entry of D. Moreover, for every matrix A there is a matrix B (with entries
in R) such that BA = AB = det(A)In (the s, t-entry of B is (−1)s+t times the determinant of the
matrix obtained from A by removing its t-th row and s-th column). The matrix B is usually denoted
by AD and called the adjoint matrix of A.

Returning to our problem, note that det(In − A) = 1 − e for some e ∈ I. Indeed, the natural
homomorphism R −→ R/I takes In − A to the identity matrix, so it takes det(In − A) to 1. This
means that det(In−A) = 1−e for some e ∈ I. Now 0 = (In−A)D((In−A)v) = ((In−A)D(In−A))v =
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det(In −A)v = (1− e)v. This means that (1− e)ai = 0 for i = 1, . . . , n, i.e. (1− e)I = 0. Now we can
repeat part d) to conclude that e2 = e and I = Re.

Problem 7. Let R be a commutative ring.

a) Let a ∈ R and let M be an ideal of R. Show that the set J = {r ∈ R : ra ∈ M} is an ideal
containing M .

b) Let F be the set of all ideals of R which are not finitely generated. Suppose that F is not empty.
Prove that it contains maximal elements (with respect to inclusion).

c) Let M be a maximal element of F and let a 6∈ M . Show that M = N + Ja for some finitely
generated ideal N contained in M , where J is the ideal from part a). Hint: what can you say about
the ideal M +Ra? Conclude that J = M . Conclude that M is a prime ideal.

Solution. a) Let s, t ∈ J . Then sa ∈ M and ta ∈ M , so sa+ ta = (s+ t)a ∈ M and s+ t ∈ J . Thus
J is closed under addition. Clearly 0 ∈ J as 0 · a = 0 ∈ M . Finally, since sa ∈ M , for any r ∈ R we
have r(sa) ∈ M , i.e. (rs)a ∈ M , so rs ∈ M . This is all we need to verify that J is an ideal. Clearly if
m ∈ M then am = ma ∈ M so m ∈ J . Thus M is contained in J .

b) We will use Zorn’s Lemma. If N is a subset of F which is a chain then consider the union K
of all the ideals in N . We know that K is an ideal. We need to check that K is in F . Then K
will be an upper bound for our chain. Well, if K was not in F , then K would be finitely generated:
K =< a1, . . . , am >. As K is the union of our chain, there are ideals Mi ∈ N such that ai ∈ Mi.
Since these ideals come from a chain, one of them contains all the others. Thus, for some j we have
a1, . . . , am ∈ Mj . It follows that K =< a1, . . . , am >⊆ Mj ⊆ K, i.e. K = Mj is finitely generated, a
contradiction. Thus K is in F , i.e. every chain in F has an upper bound in F . By Zorn’s Lemma, F
contains maximal elements.

c) Since a 6∈ M , the ideal M +Ra strictly contains M . Since M is maximal in F , the ideal M +Ra is
not in F . Thus M + Ra is finitely generated. Let m1 + t1a,m2 + t2a, . . . ,mk + tka be generators of
M + Ra, where m1, . . . ,mk ∈ M and t1, . . . , tk ∈ R. Let N be the ideal generated by m1, . . . ,mk, so
N ⊆ M and N is finitely generated. We claim that M + Ra = N + Ra. Since N ⊆ M , the inclusion
N+Ra ⊆ M+Ra is clear. On the other hand, every generator mi+ tia of M+Ra belongs to N+Ra,
so M +Ra ⊆ N +Ra.
In particular, M ⊆ N + Ra. Take m ∈ M , so m = n + ta for some n ∈ N and t ∈ R. Since
ta = m − n ∈ M , we have t ∈ J , so m ∈ N + Ja. Thus M ⊆ N + Ja. On the other hand, both N
and Ja are contained in M , so N + Ja ⊆ M . Hence M = N + Ja. We know from a) that J contains
M . If J was strictly larger than M then J would not be in F , i.e. J would be finitely generated:
J =< j1, . . . , jn >. But then the elements ms + jta with 1 ≤ s ≤ k and 1 ≤ t ≤ n would generate
N + Ja = M , contrary to the fact that M is not finitely generated. This shows that J = M . Thus if
ba ∈ M then b ∈ M .
We showed that for any element a not in M , if ba ∈ M for some b ∈ R then b ∈ M . This means that
M is a prime ideal.

We have established the following result:

Theorem. If R is a commutative ring in which every prime ideal is finitely generated then R is

Noetherian.
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Indeed, if R was not Noetherian, the set F would be non-empty but then it would contain a prime
ideal, which would not be finitely generated.


