Solutions to the Midterm, Math 525

Problem 1. Let R be a commutative ring such that for every $a \in R$ there is a natural number n > 1 such that $a^n = a$.

a) Prove that every prime ideal in R is maximal. Hint: What can you say when R is an integral domain?

b) Prove that the intersection of all prime ideals of R is trivial.

Solution. a) Let P be a prime ideal of R and let $\pi : R \longrightarrow R/P$ be the quotient homomorphism. Since P is prime, the ring R/P is a domain. Let $b \in R/P$. Since π is surjective, we have $b = \pi(a)$ for some $a \in R$. We know that $a^n = a$ for some n > 1. It follows that

$$b = \pi(a) = \pi(a^n) = \pi(a)^n = b^n.$$

Thus $b(b^{n-1}-1) = 0$. Since R/P is a domain, we conclude that either b = 0 or $b^{n-1} = 1$. It follows that if $b \neq 0$ then $b^{n-1} = 1$, so b is invertible. In other words, every non-zero element of R/P is invertible, so R/P is a field. This means that P is a maximal ideal.

b) By problem 3 d) from Homework 1 we know that the intersection of all prime ideals in a commutative ring is equal to the nilradical. Let a belong to all prime ideals of R, so a is nilpotent: $a^m = 0$ for some m > 0. We also know that $a^n = a$ for some n > 1. It follows that $a^{n^k} = a$ for every k > 0. Take k such that $n^k > m$. Then $a = a^{n^k} = a^m a^{n^k - m} = 0$. Thus the only element in the intersection of all prime ideals is 0.

A different argument. We will show that the intersection of all maximal ideals of R is trivial. Since every maximal ideal is prime, this implies the result (even without using part a)). Suppose that abelongs to all maximal ideals. Then for every $k \ge 1$, a^k belongs to all maximal ideals of R. Recall now that if u is in all maximal ideals, then 1 - u does not belong to any maximal ideal, hence 1 - uis invertible. Thus $1 - a^k$ is invertible for every k > 0. Now there is n > 1 such that $a^n = a$. This means that $a(a^{n-1} - 1) = 0$. Since $a^{n-1} - 1$ is invertible, we see that a = 0.

Problem 2. Let $R = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\}$ (so this ring is a subring of S_{-3}).

a) Define the norm on the ring R and list its key properties.

b) Find all invertible elements in R.

c) Prove that 2, $1 + \sqrt{-3}$, $1 - \sqrt{-3}$ are irreducible in R. Conclude that R is not a UFD.

d) Prove that the ideal $I = \langle 2, 1 + \sqrt{-3} \rangle$ of R is not principal and that it is maximal. Prove that $I^2 = 2I$. Is there an n such that I^n is principal?

Solution. a) For any $u = a + b\sqrt{-3}$ in R define $u^* = a - b\sqrt{-3}$. It is clear that $u^* \in R$ and $(u^*)^* = u$. Also, $u \mapsto u^*$ is an automorphism of the ring R. We define the norm $N(u) = uu^*$. Then $N(a + b\sqrt{-3}) = a^2 + 3b^2$, so the norm is always a non-negative integer. We have N(uw) = N(u)N(w) for any $u, w \in R$ and N(u) = 0 if and only if u = 0.

b) If $x, y \in R$ and xy = 1 then N(x)N(y) = N(1) = 1 so N(x) = N(y) = 1 (since N(x) is a nonnegative integer for all $x \in R$). Now $a^2 + 3b^2 = 1$ for integers a, b if and only if $a = \pm 1$ and b = 0. Thus, both x and y are ± 1 . In other words, the only invertible elements of R are 1 and -1. Alternatively, we found in class all 6 invertible elements in S_{-3} and only ± 1 belong to R (any element invertible in R is also invertible in S_{-3}).

c) Note that each of the three elements has norm 4. Suppose that one of the elements factors as xy. Then N(x)N(y) = N(xy) = 4. Recall that N(x), N(y) are positive integers. If N(x) = 1 then $x = \pm 1$ is invertible. Similarly for N(y) = 1. The only other possibility is that N(x) = N(y) = 2. However, if $a^2 + 3b^2 = 2$ for integers a, b then b = 0 (as otherwise $a^2 + 3b^2 \ge 3b^3 \ge 3 > 2$) and $a^2 = 2$, which is not possible. In other words, N(x) = 2 is not possible. Thus one of x, y must be invertible. This proves that each of the three elements is irreducible.

Since ± 1 are the only invertible elements, no two of the elements 2, $1 + \sqrt{-3}$, $1 - \sqrt{-3}$ are associated and $4 = 2 \cdot 2 = (1 - \sqrt{-3})(1 + \sqrt{-3})$. Thus 4 has two inequivalent factorizations into irreducible elements, hence R is not a UFD.

A different argument: $(1 - \sqrt{-3})(1 + \sqrt{-3}) \in 2R$ but neither $(1 - \sqrt{-3})$ nor $(1 + \sqrt{-3})$ is in 2R. This means that 2R is not a prime ideal so 2 is irreducible but not prime. Hence R is not a UFD.

d) Let us start by proving that $I^2 = 2I$. Since $2 \in I$, clearly $2I \subseteq I^2$. Note that I^2 is generated by 2^2 , $(1 + \sqrt{-3})^2$, and $2(1 + \sqrt{-3})$ Clearly 2^2 and $2(1 + \sqrt{-3})$ are in 2I and

 $(1+\sqrt{-3})^2 = -2 + 2\sqrt{-3} = 2((1+\sqrt{-3})-2) \in 2I.$

Thus all three generators belong to 2I, so $I^2 \subseteq 2I$. Hence $I^2 = 2I$, as claimed. Note that this implies that I is a proper ideal (as $2R \neq R$).

If I was principal, we would have I = xR for some $x \in R$, and therefore $x^2R = (2x)R$. This means that x^2 and 2x are associated, i.e. $x^2 = \pm 2x$. Since R is a domain and $x \neq 0$, we conclude that $x = \pm 2$ and I = 2R, which is clearly false. This shows that I is not principal.

Another argument: if I = xR was principal, then x would divide 2. But 2 is irreducible, so 2 and x would be associated and consequently I = 2R, which is false.

Note that a straightforward induction shows that $I^n = 2^{n-1}I$ for all n. Since I is not principal, I^n is not principal for all n > 0 (a simple exercise: if R is a domain, $a \neq 0$ and I is an ideal such that aI is principal then I is principal).

Recall that the additive group of R is $\mathbb{Z} \oplus \mathbb{Z}$. Thus R/2R has 4 elements. Since I strictly contains 2R, R/I has 2 elements. Thus R/I must be the field $\mathbb{Z}/2\mathbb{Z}$, so I is maximal.

Alternatively, note that $1 + I = \sqrt{-3} + I$, so $(a + b\sqrt{-3}) + I = (a + b) + I$ which is I if a + b is even and 1 + I if a + b is odd. Thus R/I has 2 elements, and therefore it is the field $\mathbb{Z}/2\mathbb{Z}$.

Problem 3. a) State Eisenstein criterion.

b) Prove that the polynomial $f = x^2 y^{2017} + x^{2017} y + x^2 - y - 1$ is a prime element in the ring $\mathbb{Q}[x, y]$. Hint: Consider f as a polynomial in R[y], where $R = \mathbb{Q}[x]$.

Solution. a) Eisenstein Criterion. Let $f(x) = f_0 + f_1x + \ldots + f_nx^n$ be a polynomial in R[x], where R is an integral domain. Suppose that there is a prime ideal P of R such that $f_n \notin P$, $f_0, f_1, \ldots, f_{n-1} \in P$ and $f_0 \notin P^2$. Then if f = gh for some $g, h \in R[x]$, then one of g, h is constant.

We have $f = x^2 y^{2017} + (x^{2017} - 1)y + (x^2 - 1) \in R[y]$. Not that R = Q[x] is a PID, hence a UFD. It follows that R[y] is a UFD, so it suffices to show that f is irreducible in R[y] (in UFD's irreducible

elements are prime). We will use the Eisenstein criterion. Note that P = (1 - x)R is a prime ideal of R as $1 - x \in R$ is irreducible in R (hence prime). Note that $x^2 \notin P$, all the other coefficients of fare in P (as 1 - x divides both $x^{2017} - 1$ and $x^2 - 1$) and $x^2 - 1$ is not in P^2 (as $(x - 1)^2$ does not divide $x^2 - 1$). By Eisenstein criterion, if f = gh for some $g, h \in R[y]$ then one of g, h is in R (i.e. is constant as a polynomial in y). Since f is primitive (i.e. $gcd(x^2, x^{2017} - 1, x^2 - 1) = 1$ in R), this constant must be invertible in R. This proves that f is irreducible.

Problem 4. Let R be a PID and let I, J be proper ideals of R.

a) Prove that the intersection of all the ideals I^n , n = 1, 2, ..., is trivial (this is true, but much harder to prove, for any Noetherian integral domain and any ideal I).

b) Prove that if $J \neq \{0\}$ then $\bigcap_{n=1}^{\infty} (J + I^n) = J + I^k$ for some k.

Solution. a) Since R is a PID, I = aR is principal. We may assume $a \neq 0$ (otherwise the result is clear). Let $b \in \bigcap_{n=1}^{\infty} I^n$ so $b \in I^n = a^n R$ for every n. This means that $b = a^n w_n$ for some $w_n \in R$. Suppose that $b \neq 0$. Then $w_n \neq 0$ for all n. Since R is a UFD, a is a product of k irreducible elements for some $k \geq 1$. Thus $b = a^n w_n$ is a product of at least nk irreducible elements. Since n is arbitrary, b has many factorizations into irreducible elements, a contradiction (for every m there is a factorization of b with more than m irreducible factors).

Alternatively, note that $aw_{n+1} = w_n$. It follows that $w_1R \subseteq w_2R \subseteq w_3R...$ Since R is Noetherian (or has ACCP), we must have $w_{k+1}R = w_kR$ for some k, which implies that $aw_{k+1}R = w_{k+1}R$. It follows that a is invertible, a contradiction. This argument actually shows the result in a more general situation, when R is an integral domain with ACCP and I is principal.

Yet another argument is based on the following observation we proved in class: if R is a PID and K is a non-zero ideal of R then R has only finitely many ideals containing K. Note that $I^{n+1} \subseteq I^n$ for every n (as $a^{n+1}R = a^n R$ would imply that $a^n = a^{n+1}r$, i.e. 1 = ar, so a would be invertible). So if the intersection $K = \bigcap_{n=1}^{\infty} I^n$ was nontrivial, we would have infinitely many different ideals I^n , $n = 1, 2, \ldots$ all containing K, a contradiction.

b) We proved in class that if R is a PID and J is a non-zero ideal of R then R has only finitely many ideals containing J. Note that $J + I \supseteq J + I^2 \supseteq J + I^3 \supseteq \ldots \supseteq J$ is a descending chain of ideals containing J. The finiteness of the set of ideals containing J implies that $J + I^k = J + I^{k+1} =$ $J + I^{k+2} = \ldots$ for some k and therefore $\bigcap_{n=1}^{\infty} (J + I^n) = J + I^k$.

Another way is to show first that in a UFD, given any two non-zero elements a, b there is k such that $gcd(b, a^k) = gcd(b, a^{k+1}) = gcd(b, a^{k+2}) \dots$ In a PID, when I = aR and J = bR, we have $J + I^n = gcd(b, a^n)R$, so the result follows.

Problem 5. Let R be a ring which contains a left ideal I minimal among all non-zero left ideals. Suppose that $I^2 \neq 0$.

a) Prove that Ra = I for all $a \in I$, $a \neq 0$.

b) Prove that if $a \in I$ then either Ia = I or $Ia = \{0\}$.

c) Prove that there is $a \in I$ such that Ia = I. Prove that for any such a the map $I \longrightarrow I$ given by $x \mapsto xa$ is bijective.

d) Let a be as in c). Prove that there is an element $e \in I$ such that $e^2 = e$ and ea = a. Conclude that I = Re.

e) Show that $Re \cap R(1-e) = \{0\}$ and R = Re + R(1-e).

Solution. a) Since $a \in I$ and I is a left ideal, we have $Ra \subseteq I$. Since Ra is a left ideal and I is minimal, we have either Ra = I or $Ra = \{0\}$. The latter is not possible, as $a \in Ra$ and $a \neq 0$. Thus I = Ra.

b) Note that if J is a left ideal in R and $b \in R$ then Jb is also a left ideal in R. Indeed, if ib, jb are elements of Jb $(i, j \in J)$ and $r \in R$, then $ib + jb = (i + j)b \in Jb$ (as $i + j \in J$) and $r(ib) = (ri)b \in Jb$ (as $ri \in J$).

We see that Ia is a left ideal contained in I so either Ia = I or $Ia = \{0\}$.

c) If $Ia = \{0\}$ for all $a \in I$ (i.e. xa = 0 for any $x, a \in I$), then $I^2 = 0$ contrary to our assumption. Thus there is an a such that $Ia \neq \{0\}$, and then Ia = I by part b).

Suppose that Ia = I. Consider the map $f : I \longrightarrow I$, f(x) = xa. This is a homomorphism of groups. Since I = Ia, this homomorphism is clearly surjective. Let K be the kernel of f. We claim that K is a left ideal. Indeed, K is a (additive) subgroup of I and if $u \in K$ and $r \in R$ then $ru \in I$ and f(ru) = (ru)a = r(ua) = 0, proving that $ru \in K$. Thus K is a left ideal containing in I, so K = I or $K = \{0\}$. In the former case, f = 0 and therefore I = 0, which is false. Thus $K = \{0\}$. This means that f is injective. We showed that f is both injective and surjective, so it is a bijection.

d) Since f in part c) is bijective, we have a = f(e) = ea for some $e \in I$. Now $e^2a = e(ea) = ea = a$ so $f(e) = f(e^2)$, hence $e = e^2$. Clearly $e \neq 0$ (as $a \neq 0$), so I = Re by part a).

d) Suppose that $x \in Re \cap R(1-e)$. Then x = re = s(1-e) for some $r, s \in R$. We see that $xe = (re)e = r(e^2) = re = x$. On the other hand, $xe = s(1-e)e = s(e-e^2) = 0$. This proves that x = 0. It follows that $Re \cap R(1-e) = \{0\}$.

For any $r \in R$ we have $r = re + r(1 - e) \in Re + R(1 - e)$. Thus R = Re + R(1 - e). This means that R is a direct sum $R = I \oplus J$ of left ideals, where J = R(1 - e).

Problem 6. Let R be a commutative ring and $I = \langle a, b \rangle$ be an ideal of R generated by two elements a, b and such that $I^2 = I$.

a) Show that every element of I is of the form ia + jb for some $i, j \in I$.

b) Suppose that $p, q, s, t \in R$ are such that pa + qb = 0 and sa + tb = 0. Show that (pt - sq)a = 0 = (pt - sq)b (one way to approach it is by using 2×2 matrices).

c) Use a) and b) to show that there is $e \in I$ such that (1-e)a = 0 = (1-e)b.

d) Show that $e^2 = e$ and I = Re (hint: what is (1 - e)I?). Conclude that I is a unital ring and J = R(1 - e) is also a unital ring and $R = I \oplus J$.

e) (Optional for extra credit) Prove c) when you only know that I is finitely generated.

Solution. a) We will show first that if $I = \langle a_1, \ldots, a_k \rangle$ is a finitely generated ideal and J is any ideal then every element of JI = IJ is of the form $j_1a_1 + \ldots + j_ka_k$ for some $j_1, \ldots, j_k \in J$. In fact, every element x of IJ is of the form $x = i_1t_1 + i_2t_2 + \ldots + i_mt_m$ for some $i_1, \ldots, i_m \in I$ and

 $t_1,\ldots,t_m \in J$. Now, for every $n, i_n = r_{n,1}a_1 + r_{n,2}a_2 + \ldots + r_{n,k}a_k$ for some $r_{n,1},\ldots,r_{n,k} \in R$. Thus

$$x = \sum_{n=1}^{m} (\sum_{l=1}^{k} r_{n,l} a_l) t_n = \sum_{l=1}^{k} a_l \sum_{n=1}^{m} r_{n,l} t_n = \sum_{l=1}^{k} j_l a_l$$

where $j_l = \sum_{n=1}^m r_{n,l} t_n \in J$ for l = 1, 2, ..., k. This proves our claim. Applying our observation to $I = \langle a, b \rangle$ and J = I, we see that every element of I^2 is of the form ia + jb for some $i, j \in I$. Part a) follows now from the assumption that $I = I^2$.

b) Let $A = \begin{bmatrix} p & q \\ s & t \end{bmatrix}$ and $v = \begin{bmatrix} a \\ b \end{bmatrix}$. Then our assumption is Av = 0. Now take $B = \begin{bmatrix} t & -q \\ -s & p \end{bmatrix}$. Then $BA = \begin{bmatrix} pt - sq & 0 \\ 0 & pt - sq \end{bmatrix}$. Now (BA)v = B(Av) = B0 = 0, i.e. $\begin{bmatrix} pt - sq & 0 \\ 0 & pt - sq \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, which is exactly what we are asked to prove.

A more direct argument (which is not that useful for answering part e)) is to note that 0 = t(pa + qb) - q(sa + tb) = (pt - sq)a and 0 = p(sa + tb) - s(pa + qb) = (pt - sq)b.

c) By part a), we can write $a = i_1a + j_1b$ and $b = i_2a + j_2b$ for some $i_1, i_2, j_1, j_2 \in I$. In other words, $(i_1 - 1)a + j_1b = 0 = i_2a + (j_2 - 1)b$. Note that $(i_1 - 1)(j_2 - 1) - j_1i_2 = 1 - (j_2 + i_1 + j_1i_2 - j_2i_1) = 1 - e$, where $e = j_2 + i_1 + j_1i_2 - j_2i_1 \in I$. By part b) we have (1 - e)a = 0 = (1 - e)b.

d) Since every element x in I is of the form $r_1a + r_2b$ for some $r_1, r_2 \in R$, we see from c) that (1-e)x = 0. In other words x = ex = xe for all $x \in I$. Thus $I \subseteq Re$. Since $e \in I$, we have (1-e)e = 0, i.e. $e = e^2$. Since I is an ideal and $e \in I$, we have $Re \subseteq I$. It follows that I = Re and $e \in I$ serves as the identity for multiplication in I: if $i \in I$ then i = re for some $r \in R$ and $ie = (re)e = re^2 = re = i$. Thus I is a unital ring (the only thing potentially missing for an ideal to be a unital ring is the identity for multiplication). Note that (1-e)(1-e) = 1-e so 1-e is the identity for multiplication in I = R(1-e). Now x = xe + x(1-e) for all $x \in R$ so R = I + J. Finally, if $u \in I \cap J$ then eu = u and u = (1-e)u = u - eu = 0, so $I \cap J = \{0\}$. This shows that $R = I \oplus J$.

e) We are assuming that I is a finitely generated ideal such that $I^2 = I$ and we want to prove that (1 - e)I = 0 for some $e \in I$. Let $I = \langle a_1, \ldots, a_n \rangle$. Using part a), we see that

$$a_k = i_{k,1}a_1 + i_{k,2}a_2 + \ldots + i_{k,n}a_n$$

for some $i_{s,t} \in I$, $1 \leq s \leq n$, $1 \leq t \leq n$. Let A be the $n \times n$ matrix whose (s,t)-entry is $i_{s,t}$. Then $(I_n - A)v = 0$, where v is the column vector (a_1, \ldots, a_n) and I_n is the $n \times n$ identity matrix.

We need now some facts about determinants. The determinant of a matrix is a polynomial expression in the entries of the matrix and it makes sense over any commutative ring. If $f: R \to S$ is a ring homomorphism then $\det(f(D)) = f(\det(D))$ for any square matrix D, where f(D) is obtained from D by applying f to every entry of D. Moreover, for every matrix A there is a matrix B (with entries in R) such that $BA = AB = \det(A)I_n$ (the s, t-entry of B is $(-1)^{s+t}$ times the determinant of the matrix obtained from A by removing its t-th row and s-th column). The matrix B is usually denoted by A^D and called the adjoint matrix of A.

Returning to our problem, note that $\det(I_n - A) = 1 - e$ for some $e \in I$. Indeed, the natural homomorphism $R \longrightarrow R/I$ takes $I_n - A$ to the identity matrix, so it takes $\det(I_n - A)$ to 1. This means that $\det(I_n - A) = 1 - e$ for some $e \in I$. Now $0 = (I_n - A)^D((I_n - A)v) = ((I_n - A)^D(I_n - A))v =$

 $det(I_n - A)v = (1 - e)v$. This means that $(1 - e)a_i = 0$ for i = 1, ..., n, i.e. (1 - e)I = 0. Now we can repeat part d) to conclude that $e^2 = e$ and I = Re.

Problem 7. Let R be a commutative ring.

a) Let $a \in R$ and let M be an ideal of R. Show that the set $J = \{r \in R : ra \in M\}$ is an ideal containing M.

b) Let \mathcal{F} be the set of all ideals of R which are not finitely generated. Suppose that \mathcal{F} is not empty. Prove that it contains maximal elements (with respect to inclusion).

c) Let M be a maximal element of \mathcal{F} and let $a \notin M$. Show that M = N + Ja for some finitely generated ideal N contained in M, where J is the ideal from part a). Hint: what can you say about the ideal M + Ra? Conclude that J = M. Conclude that M is a prime ideal.

Solution. a) Let $s, t \in J$. Then $sa \in M$ and $ta \in M$, so $sa + ta = (s + t)a \in M$ and $s + t \in J$. Thus J is closed under addition. Clearly $0 \in J$ as $0 \cdot a = 0 \in M$. Finally, since $sa \in M$, for any $r \in R$ we have $r(sa) \in M$, i.e. $(rs)a \in M$, so $rs \in M$. This is all we need to verify that J is an ideal. Clearly if $m \in M$ then $am = ma \in M$ so $m \in J$. Thus M is contained in J.

b) We will use Zorn's Lemma. If \mathcal{N} is a subset of \mathcal{F} which is a chain then consider the union K of all the ideals in \mathcal{N} . We know that K is an ideal. We need to check that K is in \mathcal{F} . Then K will be an upper bound for our chain. Well, if K was not in \mathcal{F} , then K would be finitely generated: $K = \langle a_1, \ldots, a_m \rangle$. As K is the union of our chain, there are ideals $M_i \in \mathcal{N}$ such that $a_i \in M_i$. Since these ideals come from a chain, one of them contains all the others. Thus, for some j we have $a_1, \ldots, a_m \in M_j$. It follows that $K = \langle a_1, \ldots, a_m \rangle \subseteq M_j \subseteq K$, i.e. $K = M_j$ is finitely generated, a contradiction. Thus K is in \mathcal{F} , i.e. every chain in \mathcal{F} has an upper bound in \mathcal{F} . By Zorn's Lemma, \mathcal{F} contains maximal elements.

c) Since $a \notin M$, the ideal M + Ra strictly contains M. Since M is maximal in \mathcal{F} , the ideal M + Ra is not in \mathcal{F} . Thus M + Ra is finitely generated. Let $m_1 + t_1 a, m_2 + t_2 a, \ldots, m_k + t_k a$ be generators of M + Ra, where $m_1, \ldots, m_k \in M$ and $t_1, \ldots, t_k \in R$. Let N be the ideal generated by m_1, \ldots, m_k , so $N \subseteq M$ and N is finitely generated. We claim that M + Ra = N + Ra. Since $N \subseteq M$, the inclusion $N + Ra \subseteq M + Ra$ is clear. On the other hand, every generator $m_i + t_i a$ of M + Ra belongs to N + Ra, so $M + Ra \subseteq N + Ra$.

In particular, $M \subseteq N + Ra$. Take $m \in M$, so m = n + ta for some $n \in N$ and $t \in R$. Since $ta = m - n \in M$, we have $t \in J$, so $m \in N + Ja$. Thus $M \subseteq N + Ja$. On the other hand, both N and Ja are contained in M, so $N + Ja \subseteq M$. Hence M = N + Ja. We know from a) that J contains M. If J was strictly larger than M then J would not be in \mathcal{F} , i.e. J would be finitely generated: $J = \langle j_1, \ldots, j_n \rangle$. But then the elements $m_s + j_t a$ with $1 \leq s \leq k$ and $1 \leq t \leq n$ would generate N + Ja = M, contrary to the fact that M is not finitely generated. This shows that J = M. Thus if $ba \in M$ then $b \in M$.

We showed that for any element a not in M, if $ba \in M$ for some $b \in R$ then $b \in M$. This means that M is a prime ideal.

We have established the following result:

Theorem. If R is a commutative ring in which every prime ideal is finitely generated then R is Noetherian.

Indeed, if R was not Noetherian, the set \mathcal{F} would be non-empty but then it would contain a prime ideal, which would not be finitely generated.