
Problem set 1

Problem 1. Let J be a small category and suppose that limits (colimits) of shape

J exist in C. Let K be another small category and H a functor from J to Fun(K,C).

For any object a of K we have the functor Ea : Fun(K,C) −→ C which sends any

functor G to G(a) (evaluation at a).

Prove that the limit (colimit) ofH exists and (lim
←−

H)(a) = lim
←−

(Ea◦H) ((lim
−→

H)(a) =

lim
−→

(Ea ◦ H)). This means that limits and colimits in functor categories can be

computed pointwise. This result allows the following interpretation of the result

that limits commute with limits and colimits commute with colimits. First, note

that we have the natural identifications:

Fun(J,Fun(K,C)) ≈ Fun(J×K,C) ≈ Fun(K,Fun(J,C)).

Suppose that limits (colimits) of shape J and shapeK exist in C. Let F : J×K −→ C

be a functor. Then

lim
←−
J

(lim
←−
K

F (j, k)) = lim
←−
K

(lim
←−
J

F (j, k)) = lim
←−
J×K

F ;

lim
−→
J

(lim
−→
K

F (j, k)) = lim
−→
K

(lim
−→
J

F (j, k)) = lim
−→
J×K

F.

Problem 2. Let J be a small category. We say that J is filtered if it satisfies the

following two properties:

1. For any two objects a, b in J there is an object c in J and morphisms f : a −→ c,

g : b −→ c.

2. for any two morphisms f, g : a −→ b in J there is a morphisms h : b −→ c such

that hf = hg.

We say that a functor F : J −→ C is filtered if J is filtered. The goal of this exercise

is to study colimits of filtered functors into Set (the category of sets).
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a) Let F : J −→ Set be a filtered functor. Suppose that X is a set and we have

functions fa : F (a) −→ X for each object a of J such that fbF (f) = fa for any

morphism f : a −→ b in J. Prove that the following two properties are equivalent:

(i) For any object a in J and any u, w ∈ F (a) such that fa(u) = fa(w) there is a

morphism h : a −→ b in J such that F (h)(u) = F (h)(w).

(ii) For any objects a, b in J and any u ∈ F (a), w ∈ F (b) such that fa(u) = fb(w)

there are morphisms h1 : a −→ c and h2 : b −→ c in J such that F (h1)(u) =

F (h2)(w).

b) Suppose X and the functions fa : F (a) −→ X for each object a of J satisfy the

equivalent conditions (i), (ii) in a) and also the condition

(iii) For every x ∈ X there is an object a of J and u ∈ F (a) such that x = fa(u).

Prove that X with the functions fa is a colimit of F .

c) Let F : J −→ Set be a filtered functor. Consider the disjoint union Z of the sets

F (a), a an object in J. Define the following relation ∼ on Z: u ∼ w if u ∈ F (a),

w ∈ F (b) and there are morphisms h1 : a −→ c and h2 : b −→ c in J such that

F (h1)(u) = F (h2)(w). Prove that ∼ is an equivalence relation and the quotient set

Z/ ∼ with the functions fa : F (a) →֒ Z −→ Z/ ∼ is a colimit of F .

d) Let J be a small filtered category and K a finite category (morphisms form a

finite set). Let H be a functor from J×K to Set. Prove that

lim
−→
J

(lim
←−
K

H(j, k)) = lim
←−
K

(lim
−→
J

F (j, k)).

In light of the discussion in Problem 1, this means that in Set filtered colimits

commute with finite limits. Show that in general, limits and colimits do not commute

in Set.

e) Let J be a small filtered category and let F be a functor from J to the category

Gr of groups. Composing with the forgetful functor, we get a functor F ′ from J to

Set. Let X be a colimit of F ′. Show that X has a natural group structure which

makes it a colimit of F .

2



Problem 3. Let X be a set with two binary operations � and △, each having

two-sided identity element. Suppose that for any x, y, u, w in X we have

(x�y)△(u�w) = (x△u)�(y△w).

Prove that the two operations coincide, are commutative and associative (this is

often called the Eckmann-Hilton argument).

Before the next problem, let us make two useful remarks about products.

a)Let f : X −→ A and g : X −→ B be two morphisms and suppose the product

A × B exists. Then there is unique morphism f × g : X −→ A × B such that

πA ◦ (f × g) = f and πB ◦ (f × g) = g. This is just a definition of a product. In

particular, when X = A = B a f = g = idA then the corresponding morphisms

idA × idA is denoted by ∆ and called the diagonal.

b)Let f : X −→ A and g : Y −→ B be two morphisms and suppose the products

X ×Y and A×B exists. There is unique morphisms (f, g) : X ×Y −→ A×B such

that πA ◦ (f, g) = f ◦ πX and πB ◦ (f, g) = g ◦ πY .

Exercise. Make analogous observations for the coproduct.

Problem 4. Consider a category C. Let Φ : Gr −→ Set be the forgetful functor

from groups to sets. A group structure on an object A of C is a functor F : Co −→ Gr

such that Φ ◦ F is isomorphic to the functor hA = HomC(−, A). In other words, it

is a functorial way to equip all sets HomC(X,A) with a group structure. We say

that A is a group object in C (but note that often there are many group structures

on A so it is not enough to just specify the object A).

Suppose we have a group structure on an object A of C.

a) Prove that there is unique morphism i : A −→ A such that for every X, the

”composition with i” map HomC(X,A) −→ HomC(X,A) coincides with the inver-

sion map in the group HomC(X,A) (use Yoneda’s Lemma).

b) Suppose that the product A×A exists in C. Thus we have natural isomorphisms

HomC(X,A× A) ≈ HomC(X,A)×HomC(X,A).
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Prove that there is a unique morphism m : A× A −→ A such that for every X the

group structure on HomC(X,A) is given by:

HomC(X,A)×HomC(X,A) ≈ HomC(X,A× A) −→ HomC(X,A),

where the last arrow is the ”composition with m” map.

c) Suppose that C has a final object E. Prove that there is unique morphisms

e : E −→ A such that for every X the composition eX of the unique morphism

X −→ E with e is the identity of the group HomC(X,A).

d) Suppose now that the products A × A and A × A × A exist and E is a final

object in C. We use the notation established in parts a), b), c). Prove that the

associativity of multiplication implies that m ◦ (m× idA) = m ◦ (idA ×m), i.e. the

following diagram commutes:

A× A× A
m×idA

//

idA×m

��

A× A

m

��

A× A m
// A

Show that the left inverse property in groups implies that m ◦ (i × idA) = eA, i.e.

the following diagram commutes:

A
i×idA

//

��

eA

''P
P

P

P

P

P

P

P

P

P

P

P

P

P

P

A× A

m

��

E e
// A

Show that the left identity property in groups implies that m ◦ (eA × idA) = idA,

i.e. the following diagram commutes:

A
eA×idA

//

idA

''P
P

P

P

P

P

P

P

P

P

P

P

P

P

P

A× A

m

��

A

Conversely, suppose that A is an object in a category C such that A×A and A×A×A

exist and E is a final object. Let m : A× A −→ A be a morphism for which there

exists morphisms e : E −→ A and i : A −→ A such that the above three diagrams

commute. Prove that e and i are unique and m defines a group structure on A via

HomC(X,A)×HomC(X,A) ≈ HomC(X,A× A) −→ HomC(X,A),
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where the last arrow is the ”composition with m” map.

e) Let C be a category with finite products (this includes the final object as the empty

product). Part d) tells us that group structures on an object A are in bijection with

triples m, i, e for which the three diagrams in part d) commute. We can consider the

category GC of group objects in C whose objects are quadruples (A,m, i, e) for which

the three diagrams in d) commute and a morphism (A,m, i, e) −→ (B,m′, i′, e′) is

just morphisms f : A −→ B in C such that the following diagram commutes:

A× A
m

//

(f,f)
��

A

f

��

B × B m′

// B

Show that the commutativity of this diagram is equivalent to the condition that for

every X the ”composition with f” map

HomC(X,A) −→ HomC(X,B)

is a group homomorphism. Conclude that we have fi = i′f and fe = e′. Show

that D is another category with finite products and F : C −→ D is a functor

which preserves finite products then F induces a functor F : GC −→ GD. Suppose

G : D −→ C is right adjoint to F (so G automatically preserves products). Show

that G : GD −→ GC is right adjoint to F : GC −→ GD

f) Consider the category Gr of groups. Prove that if (A,m, i, e) is a group object in

Gr then A is an abelian group and m is the multiplication of A (the Eckmann-Hilton

argument should be helpful).

f) A cogroup structure on an object A of C is the same as a group structure on

A in the dual category Co. This is the same as a functorial way to equip all sets

HomC(A,X) with a group structure. State the conditions analogous to what was

done in part d) for a cogroup structure on A (in terms of three diagrams in C,

assuming C has finite coproducts).

g) Find all cogroups in the category Set.

h) Suppose A has a cogroup structure and B has a group structure in a category

C. It follows that the set HomC(A,B) has two group structures. Prove that these
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two structures coincide and are abelian (the Eckmann-Hilton argument should be

helpful). Can you explain g) using this observation? (Remark. This in particular

explains why higher homotopy groups are abelian).
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