Problem set 2

Problem 1. Let \mathcal{A} be an abelian category. Recall that and object M in \mathcal{A} is called projective if $\operatorname{Hom}(M,-)$ is an exact functor from \mathcal{A} to the category $\mathcal{A} b$ of abelian groups. M is called a generator if the functor $\operatorname{Hom}(M,-)$ is faithfull. We assume that \mathcal{A} has all coproducts and a projective generator.
a) Show that the coproduct of a collection of objects is projective if and only if all the objects in the coproduct are projective. Show that coproduct of generators is a generator. State and prove the dual to these results.
b) Let M be any object of \mathcal{A}. Let $R=\operatorname{Hom}(M, M)$. Then R is a (unital, associative) ring. Show that each abalian group $\operatorname{Hom}(M, A)$ carries a natural right R-module structure, where $f r=f \circ r$ (composition) for $f \in \operatorname{Hom}(M, A)$ and $r \in \operatorname{Hom}(M, M)$. Thus the functor $\operatorname{Hom}(M,-)$ can be considered as a functor from \mathcal{A} to $\bmod -R$ (the categery of right R-modules).
c) Suppose that Q is a generator. For any object A consider the coproduct

$$
Q_{A}=\bigoplus_{f \in \operatorname{Hom}(Q, A)} Q_{f}
$$

where each Q_{f} is Q. The collection of morphisms $f: Q_{f}=Q \longrightarrow A$ induces a morphism $f_{A}: Q_{A} \longrightarrow A$. Prove that f_{A} is an epimorphism. Suppose now that S is a set of objects in \mathcal{A}. Consider the coproduct

$$
Q_{S}=\bigoplus_{A \in S} Q_{A}
$$

For $A \in S$ we have a morphism $f_{A}: Q_{A} \longrightarrow A$ and for $B \neq A$ we have the zero morphisms $Q_{B} \longrightarrow A$. This collection of morphisms corresponds to a morphism $Q_{S} \longrightarrow A$. Show that this morphism is an epimorphism.
d) Let \mathcal{B} be a small, full, exact subcategory of \mathcal{A}. Parts a) and c) show that there is a projective generator P which has an epimorphism to every object of \mathcal{B}. The functor $T(-)=\operatorname{Hom}(P,-)$ is a faithfull exact functor from \mathcal{B} to $\bmod -R$, where $R=T(P)$ (see part b$)$). Let A, B be objects in \mathcal{B}. Consider a right R-module homomorhism $f: T(A) \longrightarrow T(B)$. There are epimorphisms $\pi: P \longrightarrow A$ and $\sigma: P \longrightarrow B$. Let
$\eta: K \longrightarrow P$ be the kernel of π, so $0 \longrightarrow K \xrightarrow{\eta} P \xrightarrow{\pi} A \longrightarrow 0$ is exact. Since T is exact, we have the following diagram of R-modules with exact rows:

Prove that there is an R-module homomorphisms $h: R \longrightarrow R$ such that $T(\sigma) h=$ $f T(\pi)$. Show that $h=T(u)$ for some $u: P \longrightarrow P$. Then show that $\sigma u \eta=0$ and conclude that there is $\phi: A \longrightarrow B$ such that $\phi \pi=\sigma u$. Show that $T(\phi)=f$. This proves that the functor T is full.

Problem 2. a) Explain why pre-additive categories with one object are the same as rings.
b) Let \mathcal{M} be a small pre-additive category and \mathcal{A} an abelian category. Prove that additive functors from \mathcal{M} to \mathcal{A} form an abelian category. What is this category when \mathcal{M} has one object and $\mathcal{A}=\mathcal{A} b$ is the category of abelian groups?
c) Let \mathcal{C} be a small category and \mathcal{A} an abelian category. Prove that all functors from \mathcal{C} to \mathcal{A} form an abelian category.

Problem 3. Let \mathcal{A} be an abelian category. Consider the category $S E S(\mathcal{A})$ of short exact sequences in \mathcal{A}. Prove that this is a pre-abelian category, but it is not abelian if \mathcal{A} has a non-zero object.

Problem 4. Let \mathcal{A} be an abelian category. Recall that for any object X of \mathcal{A} we defined the collections of sub-objects $S(X)$ and quotient-objects $Q(X)$ of X. Both $S(X)$ and $Q(X)$ have a natural order and there is order reversing bijection from $S(X)$ to $Q(X)$. Any two sub-objects of X have the largest lower bound, called the intersection of the sub-objects and they have the least upper bound called the sum of the sub-objects (there are dual statements for the quotient objects). The problem is that in general we do not know if $S(X)$ is a set (and it does not have to be a set).
a) Suppose that \mathcal{A} has a generator G. For any monomorphism $i: A \hookrightarrow X$ let $M(i)$ be the image of the map $\operatorname{Hom}(G, A) \longrightarrow \operatorname{Hom}(G, X)$ induced by i. Prove that $i \leq j$ if and only if $M(i) \subseteq M(j)$ (recall that $i \leq j$, where $i: A \hookrightarrow X, j: A \hookrightarrow X$
are monomorphisms, means that there is $k: A \longrightarrow B$ such that $i=j k)$. Conclude that i and j are equivalent if and only if $M(i)=M(j)$. Conclude that both $S(X)$ and $Q(X)$ are sets.

From now on we assume that \mathcal{A} has a generator and all coproducts (hence also all colimits).
b) For any set of sub-objects $i_{\alpha}: A_{\alpha} \hookrightarrow X$ we have a corresponding morphism $\bigoplus_{\alpha} A_{\alpha} \longrightarrow X$. The image of this morphism is a sub-object of X denoted by $\sum_{\alpha} A_{\alpha}$. Prove that $\sum_{\alpha} A_{\alpha}$ is the lest upper bound of the sub-object A_{α} in $S(X)$.
c) Suppose that we have a linearly ordered set of sub-object $i_{\alpha}: A_{\alpha} \hookrightarrow X$ of X and let $A=\sum S_{\alpha}$ (which should be called the union in this case), so we have monomorphisms $k_{\alpha}: A_{\alpha} \hookrightarrow A$. Suppose that we have morphisms $f_{\alpha}: A_{\alpha} \longrightarrow B$ such that if $i_{\alpha} \leq i_{\beta}$ then $f_{\beta} k_{\alpha, \beta}=f_{\alpha}$, where $k_{\alpha, \beta}: A_{\alpha} \hookrightarrow A_{\beta}$ is such that $i_{\alpha}=i_{\beta} k_{\alpha, \beta}$. We would like to have a morphisms $f: A \longrightarrow B$ such that $f k_{\alpha}=f_{\alpha}$ (this is clearly true in any category of modules). Prove that this holds for any B if and only if A is the colimit of the diagram formed by A_{α} and the monomorphisms $k_{\alpha, \beta}$.

Before we state the next part let us recall some facts about colimits and limits. Let \mathcal{C} be a small category. Suppose all colimits (limits) of shape \mathcal{C} exist in \mathcal{A}. The category $\mathcal{F} u n(\mathcal{C}, \mathcal{A})$ of all functors from \mathcal{C} to \mathcal{A} is an abelian category and the colimit (limit) is a functor from $\mathcal{F} u n(\mathcal{C}, \mathcal{A})$ to \mathcal{A}. The colimit (limit) is left adjoint (right adjoint) to the diagonal functor from \mathcal{A} to $\mathcal{F} u n(\mathcal{C}, \mathcal{A})$. It follows that the colimit (limit) is right exact (left exact).
d) Prove that the following conditions are equivalent:

1. any A as in part c) is the colimit of the diagramm given by A_{α}
2. for any X, any sub-object K of X, and any linearly ordered sub-objects A_{α} of X we have $\left(\sum_{\alpha} A_{\alpha}\right) \cap K=\sum\left(A_{\alpha} \cap K\right)$.
3. for any X, any sub-object K of X, and any lattice of sub-objects A_{α} of X we have $\left(\sum_{\alpha} A_{\alpha}\right) \cap K=\sum\left(A_{\alpha} \cap K\right)$.
4. all filtered colimits in \mathcal{A} are exact functors.

Abelian categories which have a generator and all coproducts, and in which all filtered colimits are exact are called Grothendieck abelian categories.
e) Let \mathcal{A} be a Grothendieck abelian category. Prove that a contravariant functor F from \mathcal{A} to Set is representable if and only if it commutes with colimits i.e. $F(\underset{\longrightarrow}{\lim } G)=$ $\lim _{\leftarrow}(F \circ G)$. Conculde that all products exist in \mathcal{A}. Thus all limits exist in \mathcal{A}
f) Show that if \mathcal{A} and \mathcal{A}^{o} are both Grothendieck abelian catgeories then all objects in \mathcal{A} are zero.
g) Show that any coproduct is exact in a Grothendieck abelian category. Hint: Finite coproducts are also products, hence they are exact. Show that a coproduct $\bigoplus_{i \in T} X_{i}$ can be considered as a filtered colimit of the finite coproducts $\bigoplus_{i \in S} X_{i}$ where S ranges over all finite subsets of T. Show that products do not need to be exact.

Problem 5. Let \mathcal{A} be an abelian category. Recall that a simplicial object in \mathcal{A} is a functor from Δ^{o} to \mathcal{A}. Thus the simplicial objects in \mathcal{A} form an abelian category denoted by $\Delta^{o} \mathcal{A}$. More explicitly, a simplicial object C_{\bullet} in \mathcal{A} is a collection of objects C_{n} for $n=0,1, \ldots$ and morphisms $C(f): C_{n} \longrightarrow C_{m}$ for every nondecreasing function $f:\{0,1, \ldots, m\} \longrightarrow\{0,1, \ldots, n\}$ such that $C(f g)=C(g) C(f)$ whenever the composition is defined. In particular, we have the face morphisms $\delta_{i}: C_{n} \longrightarrow C_{n-1}$ for $i=0,1, \ldots n$ and degeneracy morphisms $\sigma_{i}: C_{n-1} \longrightarrow C_{n}$ for $i=0,1, \ldots n-1$. Define $A^{n}=C_{-n}$ for $n \leq 0$ and $A^{n}=0$ for $n>0$. Then set $d^{n}=\sum_{i=0}^{n} \partial_{i}: A^{n} \longrightarrow A^{n+1}$ for $n<0$ and $d^{n}=0$ for $n \geq 0$.
a) Prove that $A^{\bullet}: \ldots \xrightarrow{d^{n-1}} A^{n} \xrightarrow{d^{n}} A^{n+1} \xrightarrow{d^{n+1}} A^{n+2} \xrightarrow{d^{n+2}} \ldots$ is a complex. The assignment $K: C \bullet \mapsto A^{\bullet}=K\left(C_{\bullet}\right)$ is a functor $K: \Delta^{\circ} \mathcal{A} \longrightarrow \mathcal{K o m}^{-}(\mathcal{A})$ (how is it defined on morphisms?).
b) Let B^{n} be the sub-object of A^{n} which is the intersection of the kernels of the morphisms $\partial_{i}: A^{n} \longrightarrow A^{n+1}, i=0,1, \ldots n-1$ (when $n<0$; for $n \geq 0$ set $B^{n}=0$). Show that d^{n} induces a morphism $B^{n} \longrightarrow B^{n+1}$ which coincides with $(-1)^{n} \partial_{n}$ (restricted to B^{n}). Thus B^{\bullet} is a subcomplex of A^{\bullet} denoted by $N\left(C_{\bullet}\right)$. Show that this defines a functor $N: \Delta^{o} \mathcal{A} \longrightarrow \mathcal{K o m}^{-}(\mathcal{A})$.
c) Let D^{n} be the sub-object of A^{n} which is the lest upper bound (sum) of the images of the degeneracy maps $\sigma_{i}: A_{n+1} \longrightarrow A_{n}, i=0,1, \ldots, n-1\left(D^{n}=0\right.$ for $\left.n \geq 0\right)$. Show that d^{n} induces a morphism $D^{n} \longrightarrow D^{n+1}$. Thus D^{\bullet} is a subcomplex of A^{\bullet} denoted by $D\left(C_{\bullet}\right)$. Show that this defines a functor $D: \Delta^{\circ} \mathcal{A} \longrightarrow \mathcal{K}^{-} m^{-}(\mathcal{A})$.
d) Prove that A^{n} is the direct sum of B^{n} and D^{n}. Thus $K\left(C_{\bullet}\right)=N\left(C_{\bullet}\right) \oplus D\left(C_{\bullet}\right)$.
e) Prove that the complex $D\left(C_{\bullet}\right)$ is acyclic.
f) Let X. be a simplicial set. Let A_{n} be the free abelian group on the set X_{n}. Each function $X(f): X_{n} \longrightarrow X_{m}$ extends to a group homomorphism $A_{n} \longrightarrow A_{m}$. Show that this defines a simplicial abelian group which is denoted by $\mathbb{Z}\left[X_{\bullet}\right]$. This way we get a functor $\Delta^{o} \operatorname{Set} \longrightarrow \Delta^{o} \mathcal{A} b$. The n-th cohomology of the complex $K\left(\mathbb{Z}\left[X_{\bullet}\right]\right)$ is denoted by $H_{-n}\left(X_{\bullet}, \mathbb{Z}\right)$ and called the $(-n)$-th homology of X_{\bullet} with integer coefficients. When applied to the singular simplicial set of a topological space T we get the homology $H_{n}(T, \mathbb{Z})$. When applied to the classifying space $B G$ of a group G (this is a simplicial set) we get the homology $H_{n}(G, \mathbb{Z})$.

