Problem set 2

Problem 1. Let \mathcal{A} be an abelian category. Recall that and object M in \mathcal{A} is called **projective** if Hom(M, -) is an exact functor from \mathcal{A} to the category $\mathcal{A}b$ of abelian groups. M is called a **generator** if the functor Hom(M, -) is faithfull. We assume that \mathcal{A} has all coproducts and a projective generator.

a) Show that the coproduct of a collection of objects is projective if and only if all the objects in the coproduct are projective. Show that coproduct of generators is a generator. State and prove the dual to these results.

b) Let M be any object of \mathcal{A} . Let R = Hom(M, M). Then R is a (unital, associative) ring. Show that each abalian group Hom(M, A) carries a natural right R-module structure, where $fr = f \circ r$ (composition) for $f \in Hom(M, A)$ and $r \in Hom(M, M)$. Thus the functor Hom(M, -) can be considered as a functor from \mathcal{A} to mod - R(the category of right R-modules).

c) Suppose that Q is a generator. For any object A consider the coproduct

$$Q_A = \bigoplus_{f \in Hom(Q,A)} Q_f,$$

where each Q_f is Q. The collection of morphisms $f : Q_f = Q \longrightarrow A$ induces a morphism $f_A : Q_A \longrightarrow A$. Prove that f_A is an epimorphism. Suppose now that S is a set of objects in \mathcal{A} . Consider the coproduct

$$Q_S = \bigoplus_{A \in S} Q_A.$$

For $A \in S$ we have a morphism $f_A : Q_A \longrightarrow A$ and for $B \neq A$ we have the zero morphisms $Q_B \longrightarrow A$. This collection of morphisms corresponds to a morphism $Q_S \longrightarrow A$. Show that this morphism is an epimorphism.

d) Let \mathcal{B} be a small, full, exact subcategory of \mathcal{A} . Parts a) and c) show that there is a projective generator P which has an epimorphism to every object of \mathcal{B} . The functor T(-) = Hom(P, -) is a faithfull exact functor from \mathcal{B} to mod - R, where R = T(P)(see part b)). Let A, B be objects in \mathcal{B} . Consider a right R-module homomorhism $f: T(A) \longrightarrow T(B)$. There are epimorphisms $\pi: P \longrightarrow A$ and $\sigma: P \longrightarrow B$. Let $\eta: K \longrightarrow P$ be the kernel of π , so $0 \longrightarrow K \xrightarrow{\eta} P \xrightarrow{\pi} A \longrightarrow 0$ is exact. Since T is exact, we have the following diagram of R-modules with exact rows:

$$0 \longrightarrow T(K) \xrightarrow{T(\eta)} T(P) = R \xrightarrow{T(\pi)} T(A) \longrightarrow 0$$

$$\downarrow^{f}$$

$$T(P) = R \xrightarrow{T(\sigma)} T(B) \longrightarrow 0$$

Prove that there is an *R*-module homomorphisms $h: R \longrightarrow R$ such that $T(\sigma)h = fT(\pi)$. Show that h = T(u) for some $u: P \longrightarrow P$. Then show that $\sigma u\eta = 0$ and conclude that there is $\phi: A \longrightarrow B$ such that $\phi\pi = \sigma u$. Show that $T(\phi) = f$. This proves that the functor T is full.

Problem 2. a) Explain why pre-additive categories with one object are the same as rings.

b) Let \mathcal{M} be a small pre-additive category and \mathcal{A} an abelian category. Prove that additive functors from \mathcal{M} to \mathcal{A} form an abelian category. What is this category when \mathcal{M} has one object and $\mathcal{A} = \mathcal{A}b$ is the category of abelian groups?

c) Let \mathcal{C} be a small category and \mathcal{A} an abelian category. Prove that all functors from \mathcal{C} to \mathcal{A} form an abelian category.

Problem 3. Let \mathcal{A} be an abelian category. Consider the category $SES(\mathcal{A})$ of short exact sequences in \mathcal{A} . Prove that this is a pre-abelian category, but it is not abelian if \mathcal{A} has a non-zero object.

Problem 4. Let \mathcal{A} be an abelian category. Recall that for any object X of \mathcal{A} we defined the collections of sub-objects S(X) and quotient-objects Q(X) of X. Both S(X) and Q(X) have a natural order and there is order reversing bijection from S(X) to Q(X). Any two sub-objects of X have the largest lower bound, called the intersection of the sub-objects and they have the least upper bound called the sum of the sub-objects (there are dual statements for the quotient objects). The problem is that in general we do not know if S(X) is a set (and it does not have to be a set).

a) Suppose that \mathcal{A} has a generator G. For any monomorphism $i : A \hookrightarrow X$ let M(i) be the image of the map $Hom(G, A) \longrightarrow Hom(G, X)$ induced by i. Prove that $i \leq j$ if and only if $M(i) \subseteq M(j)$ (recall that $i \leq j$, where $i : A \hookrightarrow X$, $j : A \hookrightarrow X$

are monomorphisms, means that there is $k : A \longrightarrow B$ such that i = jk). Conclude that i and j are equivalent if and only if M(i) = M(j). Conclude that both S(X)and Q(X) are sets.

From now on we assume that \mathcal{A} has a generator and all coproducts (hence also all colimits).

b) For any set of sub-objects $i_{\alpha} : A_{\alpha} \hookrightarrow X$ we have a corresponding morphism $\bigoplus_{\alpha} A_{\alpha} \longrightarrow X$. The image of this morphism is a sub-object of X denoted by $\sum_{\alpha} A_{\alpha}$. Prove that $\sum_{\alpha} A_{\alpha}$ is the lest upper bound of the sub-object A_{α} in S(X).

c) Suppose that we have a linearly ordered set of sub-object $i_{\alpha} : A_{\alpha} \hookrightarrow X$ of Xand let $A = \sum S_{\alpha}$ (which should be called the union in this case), so we have monomorphisms $k_{\alpha} : A_{\alpha} \hookrightarrow A$. Suppose that we have morphisms $f_{\alpha} : A_{\alpha} \longrightarrow B$ such that if $i_{\alpha} \leq i_{\beta}$ then $f_{\beta}k_{\alpha,\beta} = f_{\alpha}$, where $k_{\alpha,\beta} : A_{\alpha} \hookrightarrow A_{\beta}$ is such that $i_{\alpha} = i_{\beta}k_{\alpha,\beta}$. We would like to have a morphisms $f : A \longrightarrow B$ such that $fk_{\alpha} = f_{\alpha}$ (this is clearly true in any category of modules). Prove that this holds for any B if and only if Ais the colimit of the diagram formed by A_{α} and the monomorphisms $k_{\alpha,\beta}$.

Before we state the next part let us recall some facts about colimits and limits. Let \mathcal{C} be a small category. Suppose all colimits (limits) of shape \mathcal{C} exist in \mathcal{A} . The category $\mathcal{F}un(\mathcal{C},\mathcal{A})$ of all functors from \mathcal{C} to \mathcal{A} is an abelian category and the colimit (limit) is a functor from $\mathcal{F}un(\mathcal{C},\mathcal{A})$ to \mathcal{A} . The colimit (limit) is left adjoint (right adjoint) to the diagonal functor from \mathcal{A} to $\mathcal{F}un(\mathcal{C},\mathcal{A})$. It follows that the colimit (limit) is right exact (left exact).

d) Prove that the following conditions are equivalent:

- 1. any A as in part c) is the colimit of the diagramm given by A_{α}
- 2. for any X, any sub-object K of X, and any linearly ordered sub-objects A_{α} of X we have $(\sum_{\alpha} A_{\alpha}) \cap K = \sum (A_{\alpha} \cap K)$.
- 3. for any X, any sub-object K of X, and any lattice of sub-objects A_{α} of X we have $(\sum_{\alpha} A_{\alpha}) \cap K = \sum (A_{\alpha} \cap K)$.
- 4. all filtered colimits in \mathcal{A} are exact functors.

Abelian categories which have a generator and all coproducts, and in which all filtered colimits are exact are called **Grothendieck abelian categories**.

e) Let \mathcal{A} be a Grothendieck abelian category. Prove that a contravariant functor F from \mathcal{A} to Set is representable if and only if it commutes with colimits i.e. $F(\varinjlim G) = \varinjlim(F \circ G)$. Conculde that all products exist in \mathcal{A} . Thus all limits exist in \mathcal{A}

f) Show that if \mathcal{A} and \mathcal{A}^{o} are both Grothendieck abelian catgeories then all objects in \mathcal{A} are zero.

g) Show that any coproduct is exact in a Grothendieck abelian category. Hint: Finite coproducts are also products, hence they are exact. Show that a coproduct $\bigoplus_{i \in T} X_i$ can be considered as a filtered colimit of the finite coproducts $\bigoplus_{i \in S} X_i$ where S ranges over all finite subsets of T. Show that products do not need to be exact.

Problem 5. Let \mathcal{A} be an abelian category. Recall that a simplicial object in \mathcal{A} is a functor from Δ^o to \mathcal{A} . Thus the simplicial objects in \mathcal{A} form an abelian category denoted by $\Delta^o \mathcal{A}$. More explicitly, a simplicial object C_{\bullet} in \mathcal{A} is a collection of objects C_n for $n = 0, 1, \ldots$ and morphisms $C(f) : C_n \longrightarrow C_m$ for every nondecreasing function $f : \{0, 1, \ldots, m\} \longrightarrow \{0, 1, \ldots, n\}$ such that C(fg) = C(g)C(f) whenever the composition is defined. In particular, we have the face morphisms $\delta_i : C_n \longrightarrow C_{n-1}$ for $i = 0, 1, \ldots, n$ and degeneracy morphisms $\sigma_i : C_{n-1} \longrightarrow C_n$ for $i = 0, 1, \ldots, n$ and degeneracy morphisms $\sigma_i : C_{n-1} \longrightarrow C_n$ for $i = 0, 1, \ldots, n - 1$. Define $A^n = C_{-n}$ for $n \leq 0$ and $A^n = 0$ for n > 0. Then set $d^n = \sum_{i=0}^n \partial_i : A^n \longrightarrow A^{n+1}$ for n < 0 and $d^n = 0$ for $n \geq 0$.

a) Prove that $A^{\bullet} : \ldots \xrightarrow{d^{n-1}} A^n \xrightarrow{d^n} A^{n+1} \xrightarrow{d^{n+1}} A^{n+2} \xrightarrow{d^{n+2}} \ldots$ is a complex. The assignment $K : C_{\bullet} \mapsto A^{\bullet} = K(C_{\bullet})$ is a functor $K : \Delta^o \mathcal{A} \longrightarrow \mathcal{K}om^-(\mathcal{A})$ (how is it defined on morphisms?).

b) Let B^n be the sub-object of A^n which is the intersection of the kernels of the morphisms $\partial_i : A^n \longrightarrow A^{n+1}$, $i = 0, 1, \ldots n - 1$ (when n < 0; for $n \ge 0$ set $B^n = 0$). Show that d^n induces a morphism $B^n \longrightarrow B^{n+1}$ which coincides with $(-1)^n \partial_n$ (restricted to B^n). Thus B^{\bullet} is a subcomplex of A^{\bullet} denoted by $N(C_{\bullet})$. Show that this defines a functor $N : \Delta^o \mathcal{A} \longrightarrow \mathcal{K}om^-(\mathcal{A})$. c) Let D^n be the sub-object of A^n which is the lest upper bound (sum) of the images of the degeneracy maps $\sigma_i : A_{n+1} \longrightarrow A_n$, $i = 0, 1, \ldots, n-1$ ($D^n = 0$ for $n \ge 0$). Show that d^n induces a morphism $D^n \longrightarrow D^{n+1}$. Thus D^{\bullet} is a subcomplex of A^{\bullet} denoted by $D(C_{\bullet})$. Show that this defines a functor $D : \Delta^o \mathcal{A} \longrightarrow \mathcal{K}om^-(\mathcal{A})$.

d) Prove that A^n is the direct sum of B^n and D^n . Thus $K(C_{\bullet}) = N(C_{\bullet}) \oplus D(C_{\bullet})$.

e) Prove that the complex $D(C_{\bullet})$ is acyclic.

f) Let X_{\bullet} be a simplicial set. Let A_n be the free abelian group on the set X_n . Each function $X(f): X_n \longrightarrow X_m$ extends to a group homomorphism $A_n \longrightarrow A_m$. Show that this defines a simplicial abelian group which is denoted by $\mathbb{Z}[X_{\bullet}]$. This way we get a functor $\Delta^o Set \longrightarrow \Delta^o Ab$. The *n*-th cohomology of the complex $K(\mathbb{Z}[X_{\bullet}])$ is denoted by $H_{-n}(X_{\bullet},\mathbb{Z})$ and called the (-n)-th homology of X_{\bullet} with integer coefficients. When applied to the singular simplicial set of a topological space T we get the homology $H_n(T,\mathbb{Z})$. When applied to the classifying space BGof a group G (this is a simplicial set) we get the homology $H_n(G,\mathbb{Z})$.