
1. δ-functors

Let C, D be abelian categories. Recall that for any abelian category

A we have the category SES(A) of short exact sequences in A and three

functors Ti : SES(A) −→ A, i = 1, 2, 3, defined by

Ti(0 −→ A1 −→ A2 −→ A3 −→ 0) = Ai.

Following Grothendieck, we make the following definitions

Definition 1. A δ-functor form C to D is a collection of additive

functors Fn : C −→ D, n ∈ Z, and natural transformations δn : Fn ◦

T3 −→ Fn+1 ◦ T1 of functors from SES(C) to D such that for every

short exact sequence 0 −→ A −→ B −→ C −→ 0 in C the sequence

... −→ Fn−1(C)
δn−1

−−−→ Fn(A) −→ Fn(B) −→ Fn(C)
δn
−→ Fn+1(A) −→ ...

is a complex. If this complex is exact for every short exact sequence in

C then the δ-functor is called exact.

Definition 2. A δ-functor is called cohomological (homological) if

Fn = 0 for all n < 0 (resp. for all n > 0).

Remark. For a homological δ-functor it is customary to write Fn for

F−n, etc.

Definition 3. A cohomological δ-functor is called effaceable if for any

object X of C there is a monomorphism u : X −→ Y such that Fn(u) = 0

for all n > 0. A homological δ-functor is called effaceable if for any

object X of C there is an epimorphism u : Y −→ X such that Fn(u) = 0

for all n < 0. Any such u is called an effacing morphism.

Definition 4. A cohomological ( homological) δ-functor is called uni-

versal, if it is exact and effaceable.



Theorem 1. Let (Fn) be a universal cohomological (homological) δ-

functor and (Gn) any δ-functor. Any natural transfromation α : F 0 −→

G0 of functors (resp. α : G0 −→ F 0) uniquely extends to a natural

transformation of δ-functors.

Remark. A natural transformation of δ-functors is a collection of nat-

ural transformations αn : Fn −→ Gn, n ∈ Z, such that for every k

and every short exact sequence 0 −→ A −→ B −→ C −→ 0 in C the

following diagram commutes:

(1) F k−1(C)
δk−1

//

αk−1

��

F k(A)

αk

��

Gk−1(C)
δk−1

// Gk(A)

Proof: We give a proof for cohomological δ-functors and leave the case

of homological δ-functors as an exercise.

Uniqueness. Suppose we have two natural transformations (αn), (βn)

such that α0 = α = β0. Clearly αn = 0 = βn for all n < 0, since Fn = 0

for such n. We show that αn = βn by induction on n. For n = 0 it is

our assumption. Suppose then that αk = βk for all k < n. Let X be an

object of C and u : X −→ Y an effacing monomorphism. Thus we have

an exact sequence

0 −→ X
u
−→ Y

j
−→ Z −→ 0

where Z = cokeru, which leads to the following commutative diagram

Fn−1(Z)
δn−1

//

αn−1=βn−1

��

Fn(X)
Fn(u)

//

αn

��
βn

��

Fn(Y )

Gn−1(Z)
δn−1

// Gn(X)
Gn(u)

// Gn(Y )

with the top row exact. Note that αnδn−1 = δn−1αn−1 = δn−1βn−1 =

βnδn−1. Since Fn(u) = 0, the morphism δn−1 in the top row is an

epimorphism, hence the equality αnδn−1 = βnδn−1 implies that αn =

βn.



Existence. Suppose that we have already constructed natural transfor-

mations αk for k < n such that the diagrams (1) commute for k < n.

Let X be an object of C and u : X −→ Y an effacing monomorphism.

Thus we have an exact sequence

0 −→ X
u
−→ Y

j
−→ Z −→ 0

where Z = cokeru, which leads to the following commutative diagram

Fn−1(Y )
Fn−1(j)

//

αn−1

��

Fn−1(Z)
δn−1

//

αn−1

��

Fn(X) // 0

Gn−1(Y )
Gn−1(j)

// Gn−1(Z)
δn−1

// Gn(X)

with the top row exact. Note that (δn−1αn−1)Fn−1(j) = αn−1Gn−1(j)δn−1 =

0 (since Gn−1(j)δn−1 = 0). It follows that there exists unique morphism

αu such that the diagram

Fn−1(K)
δn−1

//

αn−1

��

Fn(X)

αu

��
Gn−1(K)

δn−1

// Gn(X)

commutes. If the natural transformation αn exists, then we must have

αn = αu by uniqueness. In particular, αu should not depend on the

effacing morphism u. We will show that this is indeed true and that

setting αn = αu indeed defines a natural transformation of functors for

which the diagrams (1) commute for k = n.

Suppose that we are given a commutative diagram

0 // X
u //

f
��

Y
j

//

��

Z //

g

��

0

0 // A
w // B

i // C // 0

with exact rows and u, w effacing monomorphisms. This leads to the

following cube



Fn−1(Z)
δn−1

//

αn−1
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Fn−1(g)

��

Fn(X)

αu
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Fn(f)

��

Gn−1(Z)
δn−1

//

Gn−1(g)

��

Gn(X)

Gn(f)

��

Fn−1(C)
δn−1

//

αn−1
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Fn(A)

αw
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Gn−1(C)
δn−1

// Gn(A)

in which all faces except perhaps the right face commute and in which

the top δn−1 is an epimorphism. We claim that it follows that the right

face commutes too, i.e. that Gn(f)αu = αwF
n(f). In fact, since the

top δn−1 is an epimorphism, it is enough to show that Gn(f)αuδ
n−1 =

αwF
n(f)δn−1. The commutativity of the faces gives

Gn(f)αuδ
n−1 = Gn(f)δn−1αn−1 = δn−1Gn−1(g)αn−1 =

= δn−1αn−1Fn−1(g) = αwδ
n−1Fn−1(g) = αwF

n(f)δn−1,

which confirms our claim.

Suppose now that we have two short exact sequences

0 −→ X
u
−→ Y

j
−→ Z −→ 0

and

0 −→ A
w
−→ B

i
−→ C −→ 0

with u, w effacing monomorphisms and a morphism f : X −→ A. We

can not apply the previous paragraph directly since there is no reason in

general for f to extend to a morphism of short exact sequences. Fortu-

nately, there is a way around this problem. We construct a third exact

sequence:

0 −→ X
u×wf
−−−−→ A× Y −→W −→ 0



(where W is a cokernel of u× wf). The following diagram commutes

0 // X
u // Y

j
// Z // 0

0 // X
u×wf

//

id

OO

f

��

Y ×B //

pB
��

pY

OO

W //

��

OO

0

0 // A
w // B

i // C // 0

where pB, pY are projections and the vertical arrows fromW are uniquely

determined by the universal property of a cokernel. Since Fn are ad-

ditive, Fn(u × wf) = Fn(u) × Fn(w)Fn(f) = 0 × 0 = 0 for n > 0.

Thus u×wf is an effacing monomorphism. Applying the previous para-

graph to the top two and bottom two exact sequences yields the equal-

ities Gn(id)αu×wf = αuF
n(id) and Gn(f)αu×wf = αwF

n(f). Thus

αu×wf = αu and Gn(f)αu = αwF
n(f). In particular, we may take

A = X and f = id and we see that αu = αw. This proves independence

of the effacing monomorphism and allows us to define αn = αu. Since

for any morphism f we have Gn(f)αn = αnFn(f), we see that αn is a

natural transformation from Fn to Gn.

It remains to show that the diagrams (1) commute for k = n. So we

start with an exact sequence 0 −→ A
i
−→ B −→ C −→ 0 in C. Note

that if i is an effacing monomorphism then the corresponding diagram

(1) commutes for k = n by definition of αn. Let u : B −→ Y be an

effacing monomorphism. Note that ui : A −→ Y is also an effacing

monomorphism. We have a commutative diagram

0 // A
i //

id
��

B //

u

��

C //

w

��

0

0 // A
ui // Y // Z // 0



which leads to the following cube

Fn−1(C)
δn−1

//

αn−1
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Fn−1(w)

��

Fn(A)

αn

$$■
■

■

■

■

■

■

■

■

Fn(id)

��

Gn−1(C)
δn−1

//

Gn−1(w)

��

Gn(A)

Gn(id)

��

Fn−1(Z)
δn−1

//

αn−1
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Fn(A)
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Gn−1(Z)
δn−1

// Gn(A)

in which all faces except possibly the top one commute. Our proof will

be completed if we show that the top face commutes as well. But this

is quite simple at this point:

αnδn−1 = Gn(id)αnδn−1 = αnFn(id)δn−1 = αnδn−1Fn−1(w) =

= δn−1αn−1Fn−1(w) = δn−1Gn−1(w)αn−1 = Gn(id)δn−1αn−1 = δn−1αn−1. ✷

Corollary 1. A universal cohomological (or homological) δ-functor (Fn)

is uniquely determined by F 0. More precisely, if (Gn) is another univer-

sal cohomological (or homological) δ-functor and α : F 0 −→ G0 (resp.

α : G0 −→ F 0)is an equivalence of functors then it uniquely extends to

an equivalence (αn) of δ-functors.

Proof: Let β be the inverse of α. There are unique extensions (αn) of

α and (βn) of β, as given by Theorem 1. Now γn = αnβn is an extension

of αβ = id. Since identity γ′n = id is also an extension , the uniqueness in

Theorem 1 implies that γn = αnβn = id for all n. Similarly, βnαn = id

for all n. ✷

The last lemma indicates that a universal δ-functor can be recovered

from F 0. It is natural to ask for a way to compute the δ-functor from

F 0. A related question is what functors F : C −→ D are equal to F 0



for some universal δ-functor. The following simple observation gives a

necessary condition:

Proposition 1. If (Fn) is a universal cohomological (homological) δ-

functor then F 0 is left exact (resp. right exact).

Proof: If 0 −→ A −→ B −→ C −→ 0 is a short exact sequence in C

then we have the long exact sequence

... −→ F−1(C) −→ F 0(A) −→ F 0(B) −→ F 0(C) −→ F 1(A) −→ ...

If (Fn) is cohomological then F−1(C) = 0 and we get left exactness, if

(Fn) is homological then F 1(A) = 0 and we get right exactness. ✷

Definition 5. Let (Fn) be a universal cohomological (homological) δ-

functor. An object A is called acyclic (for the δ-functor) if Fn(A) = 0

for all n > 0 (resp. all n < 0).

We are now going to concentrate on cohomological functors but in

parenthesis we will put remarks about analogous statements for ho-

mological δ-functors. Note that if f : X −→ Y is a monomorphism

(epimorphism) and Y is acyclic (X is acyclic) then f is an effacing

monomorphism (epimorphism). Moreover, suppose that 0 −→ A −→

B −→ C −→ 0 is a short exact sequence with B acyclic. In the long

exact sequence

... −→ F k−1(C) −→ F k(A) −→ F k(B) −→ F k(C) −→ F k+1(A) −→ ...

we have F i(B) = 0 for all i > 0 (i < 0 if the δ-functor is homological).

It follows that the maps δk : F k(C) −→ F k+1(A) are isomorphisms for

k > 0. This observation often allows to reduce stetements about Fn

to statements about Fn−1 and is called dimension shifting. A more

refined version of this ideas is the following fundamental

Theorem 2. Let (Fn) be a cohomological universal δ-functor and set

F = F 0. Given an exact sequence

0 −→ A
f
−→M0 d0

−→M1 d1
−→M2 d2

−→ ...



with M i acyclic for all i, the k−th cohomology of the complex

(2) 0 −→ F (M0)
F (d0)
−−−→ F (M1)

F (d1)
−−−→ F (M2)

F (d2)
−−−→ ...

is isomorphic to F k(A) for all k ≥ 0.

Similarly, let (Fn) be a homological universal δ-functor and set F =

F 0. Given an exact sequence

0←− A←−M0 ←−M1 ←−M2 ←− ...

with Mi acyclic for all i, the k−th cohomology of the complex

0←− F (M0)←− F (M1)←− F (M2)←− ...

is isomorphic to F−k(A) for all k ≥ 0.

Proof: We will give a proof for cohomological functors. We proceed

by induction on k.

k = 0: Since the functor F is left exact, the sequence

0 −→ F (A) −→ F (M0) −→ F (M1)

is exact, so F (A) is isomorphic to the kernel F (d0), i.e. to H0 of the

complex 2.

k = 1: Let A1 be the image of d0 (which is canonically isomorphic to

the cokernel of f), so we have the following exact sequences:

0 −→ A −→M0 d
−→ A1

−→ 0

and

0 −→ A1 f
−→M1 d1

−→M2 d2
−→M3 d3

−→ ...

The long exact sequence associated to the first of these sequences is

0 −→ F (A) −→ F (M0) −→ F (A1) −→ F 1(A) −→ F 1(M0) = 0 −→ ...

Thus F 1(A) is a cokernel of the morphism F (d) : F (M0) −→ F (A1).

On the other hand, left exactness of F implies that the sequence

0 −→ F (A1) −→ F (M1) −→ F (M2)



is exact, so F (A1) is a kernel of F (d1). Thus H1 of the complex 2 is

isomorphic to a cokernel of F (d). Thus F 1(A) and H1 are canonically

isomorphic.

inductive step: Suppose that the result holds for k < n, where n ≥ 2.

The long exact sequence associated to

0 −→ A −→M0 d
−→ A1

−→ 0

shows that Fn(A) is isomorphic to Fn−1(A1) (dimension shifting). Since

the sequence

0 −→ A1 f
−→M1 d1

−→M2 d2
−→M3 d3

−→ ...

is exact, we may use the iductive assumption and conclude that Fn−1(A1)

is isomorphic to Hn−1 of the complex

0 −→ F (M1)
F (d1)
−−−→ F (M2)

F (d2)
−−−→ F (M3)

F (d3)
−−−→ ...

which is the same as Hn of the complex 2 (since n ≥ 2). ✷

Theorem 2 suggests a method to recover Fn from F 0. The only

problem is that we need to use acyclic objects, which are defined by using

the functors Fn. Fortunately, we have the following crucial observation

Proposition 2. Injective (projective) objects are acyclic for any uni-

versal cohomological (homological) δ-functor.

Proof: We give a proof for cohomological δ-functors. Let I be an

injective object and u : I −→ Y an effacing monomorphism. The in-

jectivity of I implies the existence of a morphism w : Y −→ I such

that wu = id. Thus, for n > 0, we have id = Fn(id) = Fn(wu) =

Fn(w)Fn(u) = Fn(w)0 = 0, hence Fn(I) = 0 (an object is 0 iff 0 = id).

✷


