Homework 1

due on Monday, September 19

Problem 1. Let G be a group with a normal subgroup N and a (not necessarily normal) subgroup H. Suppose that N has a chain of normal (in N) subgroups

$$N_1 = N \ge N_2 \ge N_3 \ge \dots$$

such that $[H, N_i] \subseteq N_{i+1}$ for all i. Prove that $[\gamma_i(H), N_j] \subseteq N_{i+j}$ for all i, j.

Problem 2. Let P be a finite p-group.

- a) Prove that if $\gamma_2(P) \cap \mathfrak{z}_2(P)$ is cyclic then $\gamma_2(P)$ is cyclic.
- b) If the center of [P, P] is cyclic then [P, P] is cyclic.
- c) If the center of Frat(P) is cyclic then Frat(P) is cyclic.

Problem 3. Let P be a finite p-group such that $[P^{(1)}:P^{(2)}] \leq p^2$. Prove that the commutator subgroup $P^{(1)}$ of P is abelian.

Problem 4. The lower p-central series of G is the descending central series

$$G = \lambda_1(G) \ge \lambda_2(G) \ge \lambda_3(G) \ge \dots$$

of subgroups of G, where $\lambda_{i+1}(G) = [\lambda_i(G), G]\lambda_i(G)^p$ for all i. Prove that

- a) If $G = G_1 \ge G_2 \ge G_3 \ge ...$ is a descending central series such that G_i/G_{i+1} has exponent p for all i, then $\lambda_i(G) \subseteq G_i$ for all i.
- b) $[\lambda_i(G), \lambda_j(G)] \leq \lambda_{i+j}(G)$ for all i, j.
- c) If $\lambda_2(G) = \gamma_2(G)$ then $\lambda_i(G) = \gamma_i(G)$ for all i.

Problem 5. Prove that if a finite p-group has an abelian subgroup of index p^2 then it has a normal abelian subgroup of index p^2 .

Problem 6. Let p be a prime and let \mathbb{F}_p be the field with p-elements. Find the lower central series and the derived series of the group of $n \times n$ upper-triangular matrices over \mathbb{F}_p with all diagonal entries equal to 1.