Homework 1
Solutions

Problem 1. Let G be a group with a normal subgroup N and a (not necessarily normal)
subgroup H. Suppose that N has a chain of normal (in N) subgroups

N1 =N >Ny > N3> ..
such that [H, N;] C N4 for all i. Prove that [v;(H), N;] C Ny  for all 4, j.

Solution: Note that the only elements involved in the problem are those in the subgroup
N H. Replacing G by N H if necessary, we may assume that G = N H. Note that the inclusion
[H,N;] € N;11 € N; implies that H normalizes each N;. Since N; is normal in N, both H
and N normalize N;, so IV; is normal in NH = G.

The proof that [v;(H), Nj] € N;4; is by induction on 7 and it is exactly the same as the
proof given in class for the special case when H = N = G and N; = ;(G). Since H = v (H),
the result holds for ¢ = 1 and all j.

Recall that the main tool was the following result: if A, B, C' are subgroups of a group G
and K is a normal subgroup of G such that both [C, A, B] and [B, C, A] are contained in K
then [A, B,C] C K. Recall also that [A, B] = [B, A] for any subsets A, B.

Our goal is to show that [y;11(H), N;] € Nitjy1. Note that v (H) = [vi(H), H] so
i+1(H), Nj] = [vi(H), H, N;]. Applying our main tool with A = v;(H), B= H, C' = N; and
K = Njtj+1 we see that it suffices to show that [N;,v;(H), H] € Nj4 ;41 and [H, N;,vi(H)] C
Niyji1. Observe that

[Nj,vi(H), H] = [[Nj,vi(H)), H] = [H, [vi(H), Nj]] € [H, Nij] € Nigjta,
where we used the inductive assumption that [v;(H), N;] € N;;. Similarly,
[H, Nj,vi(H)| = [[H, Nj},vi(H)] = [i(H), [H, Njl] € [vi(H), Nj1] € Nigjpr,

where we used the inductive assumption that [y;(H), Nj41] € Niyj+1. This completes the
proof.

Problem 2. Let P be a finite p-group.
a) Prove that if y9(P) N 32(P) is cyclic then 2 (P) is cyclic.

Solution: Suppose that y2(P) is not cyclic. Then, by a result from class, the group
72(P) has an elementary abelian subgroup A of order p? which is normal in P (note that
v2(P) is contained in Frat(P)). Another result from class states that a normal subgroup of
order p* is contained in 33 (P). Thus A C ~2(P) N 32(P), which contradicts the assumption
that v2(P) N 32(P) is cyclic.

b) If the center of [P, P] is cyclic then [P, P] is cyclic.

Solution: Since [P, P] = v2(P) commutes with 32(P), the group v2(P)N32(P) is contained
in the center of [P, P], hence it is cyclic. By part a) the group [P, P] is cyclic as well.

c) If the center of Frat(P) is cyclic then Frat(P) is cyclic.

Solution: Suppose that Frat(P) is not cyclic. Then, by a result from class, Frat(P) has
an elementary abelian subgroup B of order p? which is normal in P. The group P acts by
conjugation on B so P/Cp(B) embeds into the group of automorphisms of B, which has



order (p?> — 1)(p? — p) = p(p — 1)(p? — 1). It follows that the group P/Cp(B) has order
at most p. Thus either Cp(B) = P or Cp(B) is a maximal subgroup of P. In both cases
Frat(P) C Cp(B). But this implies that B is in the center of Frat(P), which is cyclic, a
contradiction.

Problem 3. Let P be a finite p-group such that [P(1) : P(2)] < p?. Prove that the commutator
subgroup P of P is abelian.

Solution: Suppose that P(1) = [P, P] is not abelian, i.e. that P@ is not trivial. Then
P® has a subgroup M of index p which is normal in P. Let Q = P/M. Then Q) = P /M
and Q% = PP /M. Thus |Q®| = p and [Q) : Q)] = [PMV : PA)] < p?. In particular,
|Q(1)| < p3. Since Q@ is not trivial, the group QM) is not abelian and therefore we must
have |Q(1)] = p3. There is a normal subgroup B of Q of order p? such that B C Q(Y) = Y2(Q).
It follows that B C 32(Q). Since 72(Q) and 32(Q) commute, B is a central subgroup of Q).
Since QM /B is cyclic (has order p), the group Q1) is abelian, a contradiction.

Problem 4. The lower p-central series of G is the descending central series
G =M(G) > X(G) > X3(G) > ...

of subgroups of G, where A\i11(G) = [Ni(G), G]\i(G)P for all i. Prove that

a) If G = G1 > Gy > G3 > ... is a descending central series such that G;/G;+1 has exponent
p for all 4, then \;(G) C G; for all i.

Solution: The proof is by induction on ¢. For ¢ = 1 the result holds trivially. Suppose that
Xi(G) C G; for some i. Since the G’s form a central (descending) series, we have [\;(G), G] C
[Gi, G] C Giy1. Furthermore, \;(G)P C Gf C Gy11, the last inclusion being a consequence of
the assumption that G;/G;41 has exponent p. Thus A\i11(G) = [Ni(G), GIN(G)P C Giy1.

b) P\Z(G), AJ(G)] < >\1+j(G) for all Z,]

Solution: We prove that [A;(G), \;(G)] < Ai1;(G) by induction on i. The proof is similar
to the solution of Problem 1, but slightly more complicated. For ¢ = 1 the result holds for all
Jj since [G, \;(G)] < A14j(G) from the definition of the lower p-central series. Suppose that
Ai(G), A (Q)] £ Xit;(G) for some i and all j.

We need the following simple result: if A, B, C are normal subgroups of a group G then
[AB,C] = [A,C][B,C]. It is an immediate consequence of the identity [ab, c] = [a, ¢]®[b, ¢] =
[a®, ][, ¢]. Since the groups \;(G), [\i(G), G] and \;(G)P are all normal (even characteristic)
in G, we see that

[Pi41(G), A (G)] = [[Mi(G), GIA(G)?, A (G)] = [[N(G), G, A (GI[A(G)?, A (G)]-
Thus we need to show that [[Aj(G), G, \j(G)] C Xitj+1(G) and [Xi(G)P, A;(G)] C Nitj+1(G).
In order to show that [[\i(G),G],\i(G)] C Aitj+1(G) we use the same technique we

employed in the solution to Problem 1. It suffices to show that both [A;(G), \i(G), G| and
(G, \j(G), \i(Q)] are contained in i1 j+1(G). We have

[Ai(G), Ai(G), G] = [[M(G), Ai(G)], Gl = [[Xi(G), Ai(G)], Gl € [Nig(G), G] € Aigj+1(G)
and

(G, \(G), M\i(G)] = [[MN(G), GLA(G)] € [Njr1(G), Ai(G)] = [Mi(G), Ajr1(G)] € Aigjr1(G),



which proves that indeed [[A\;(G), G], \;(G)] C Xitj+1(G).

It remains to prove that [A\;(G)P, \;(G)] C Xiyj+1(G). Recall that H* denotes the sub-
group of H generated by all k-th powers of elements in H. Thus every element of \;(G)? is
of the form afa}...af for some ay,...,a; € \i(G). Observe that if 2,y € \i(G) and z € X;(G)
then [z, 2], [y, 2] are in A\iy;(G) by the inductive assumption. Since [G, A;(G)] < Ai4;(G), we
see that the elements of \;1;(G) are central modulo A\i4;4;(G). Thus for a,b € A\;(G) and
any c¢ € A\;j(G) we have

lab, ] = [a, c]’[b, ] = [a, ][b, ] mod Aiyjr1(G).
It follows that for a = afdb...af € Ai(G)P and any ¢ € \;(G) we have
la, ] = [afdh...a} .c] = [a1, c]Plag, c]P...[ak, ¢]P mod Aitj41(G).

Since [as,¢] € Xit;(G) for s = 1,...,k we see that [as,c]? € Aipi;(G) for all s. Thus
[a1, c]Plag, c]P...[ag, c]P € Ai4i+;(G) and therefore [a, c] € Ai4i4;(G). This proves that [A\;(G)P, A\;(G)] C
Xi+j+1(G) and completes our proof of b).

c) If \a(G) = 12(G) then \;(G) = ;(G) for all 1.

Solution: Note that v;(G) C X\;(G) for all i, since G = A\ (G) > X(G) > A3(G) > ...
is a central series. By part a), in order to show that A\;(G) C 7;(G) it suffices to prove
that v;(G)/7i+1(G) has exponent p. The group v;(G)/vi+1(G) is abelian, so it would be
enough to show that it is generated by elements of order p. For ¢ = 1 this follows from the
assumption that A\2(G) = 72(G). Suppose that ¢ > 2. The group vi(G)/7i+1(G) is generated
by elements of the form [g, u]y;+1(G) with g € G and u € 7,1 (G). Note that for g, h € G and
u € v;—1(G) we have [gh,u] = [g,u]"[h, u] = [g,u][[g, u], h][h,u]. Since [[g,u], h] € Yi+1(G), we
conclude that [gh, u]vi+1(G) = [g, ulVi+1(G)[h, ulvi+1(G). Consequently, ([g, u]vi+1(G))P =
[P, ulvi+1(G). Tt follows from the equality A2(G) = 72(G) that gP € ¥2(G) for all g € G.
Thus [¢P,u] € vi+1(G) for all g € G and u € ~;—1(G). Hence ([g,u]yi+1(G))? = 1 for all
g € G and u € ;_1(G), which proves that the group v;(G)/7i+1(G) is generated by elements
of order p.

Problem 5. Prove that if a finite p-group has an abelian subgroup of index p? then it has a
normal abelian subgroup of index p?.

Solution: Let A be an abelian subgroup of index p? in P. Suppose that A is not normal
and let M be a maximal subgroup of P which contains A. Thus M is normal in P and
A is maximal in M. Since A is not normal, there is ¢ € P such that gAg~' # A. Note
that gAg~' C gMg~' = M. Thus A and gAg~—' are distinct maximal subgroups of M so
A(gAg~') = M. Since A and gAg~! are abelian, the group K = AN gAg~"' is central in
A(gAg~') = M. Clearly K has index p? in M so the center Z(M) of M has index at most
p?. If the index [M : Z(M)] < p then M is abelian and there is as a subgroup B of index
p in M which is normal in P, so B is an abelian normal subgroup of P of index p?. If the
index [M : Z(M)] = p? then since both M and Z(M) are normal in P, there is a subgroup
Z(M) < C < M normal in P. Clearly C has index p? in P and is abelian (since C/Z (M) is
cyclic). Thus in any case, P has a normal abelian subgroup of index p?.

Problem 6. Let p be a prime and let IF,, be the field with p-elements. Find the lower central
series and the derived series of the group of n x n upper-triangular matrices over F,, with all
diagonal entries equal to 1.



Solution: Denote the group of n x n upper-triangular matrices over a field F' with
all diagonal entries equal to 1 by UT(n, F) (elements of this group are called unipotent
upper-triangular matrices). Let UTy(n, F) be the subset of UT(n, F') which consists of
all unipotent upper-triangular matrices whose first k£ — 1 diagonals above the main diagonal
are zero. In other words, a unipotent upper-triangular matrix (a; ;) belongs to UTy(n, F) iff
a;j = 0 for all ¢, j such that 0 < j —i < k. Clearly UT:(n, F') = UT(n, F') and it is a simple
exercise to show that UTy(n, F') is a normal subgroup of UT(n, F') for all k. The simplest
way to do that is to think of elements of UT(n, F') as linear transformations.

Recall that n x n matrices can be naturally identified with linear transformations on the
vector space V = F™. Denote by V; the subspace of V which consists of vectors with all but
the first ¢ coordinates equal to 0. Thus Vy = {0}, V1 = {(a,0,0,...,0) : a € F'}, etc. Via the
identification of matrices and linear transformation we have

UTyp(n, F)={T:V — V(T —1I)(V;) C V,_, for all k}

(where we set V; = {0} for ¢ < 0). In particular, T'(V;) = V; for all T € UT(n,F). If
S € UTy(n, F) then (TST* -~ 1)(V;) =T(S — DT *V;) =T(S — (Vi) CT(Vieg) = Vig
for any T' € UT(n, F), proving that UT(n, F') is a normal subgroup of UT(n, F).

For any 7 # j let e;; denote the matrix with ¢, j-entry 1 and all other entries 0. For
a € F set E; j(a) = I + ae;j. This is the familiar elementary matrix: the product E; ;(a)M
is obtained from M by adding to the i-th row of M the j-th row multiplied by a.

Note that E; j(a) € UTy(n, F') iff j —i > k. The key observation is the following

Lemma 1. The group UTy(n, F') is generated by the set {E; j(a) :j —i >k and a € F'}.

Proof: The proof is a simple consequence of the familiar row reduction process. Let
A = (a;j) € UTk(n, F). The matrix

B =E,_kn(—an—tn)---FEapra(—aki2)E1 gy1(—a1 p+1)A

has 0’s in the k — th diagonal over the main diagonal, i.e all the entries of the form i,7 + k
are zero. But this matrix belongs to UTy(n, F'), since all the elementary matrices used are in
this group. Thus B € UTy41(n, F'). Note that

A = FEy pt1(a1 g1) B pr2(a2 k+2) - Bt (Gn—t.n) B,

This shows that if Lemma 1 holds for UTj41(n, F) then it also holds for UT(n, F'). Since
UT,—1(n, F) = {E1x(a): a € F}, Lemma 1 holds for UT,,_;(n, F') and therefore it holds for
all k£ by (now) obvious induction. O

Lemma 2. [UT;(n, F),UT;(n, F)] C UTi;(n, F)

Proof: We will use the approach via liner transformations. Let 7' € UT;(n,F) and
S € UTj(n, F). Then

1,8 -I=T"'S' TS~ I =T"'S™HTS—ST)=T"'S ' (T-1)(S—1)—(S—I)(T—1)).

Now (T'—1)(S —1)(Vk) € (T —I)(Vik—j) C Vi—i—; and likewise (S —I)(T' —I)(Vi) C Vi—i—j-
It follows that ((T'—1)(S —1) — (S —=I)(T —1I))(Vx) € Vi—i—; and therefore

([T, 8] = D(Vie) = T STH(T = I)(S = 1) = (S = I)(T = D) (Vi) € TS (Viminj) C Vimi—j-

This shows that [T,5] € UT;y(n,F). O



We will prove now that in Lemma 2 equality holds. By Lemma 1, it suffices to show that
Egi(a) € [UT;(n, F),UT;(n, F)] for all @ € F and all s,t such that ¢t —s > i+ j. Recall the
following simple but very useful identities:

1 if kK # q and [ # p;
[Eri(a), Epg(b)] = § Erglab) if I =pand k # g
E,i(—ab) ifk=qandl#p

In particular, if t —s > i+ j then t — (s +4) > j so Esi(a) = [Essri(1l), Esrit(a)] and
Egs1i(1) € UTi(n, F), Esyir(a) € UTj(n, F). Thus we proved

Lemma 3. [UTl(n, F), UT] (’I’L, F)] = UTZ'+J'(’I7,, F)
It is now not hard to derive the following

Theorem 1. ~;(UT(n, F)) = UT;(n, F) and UT(n, F)*) = UTg(n, F). The nilpotency
class of UT(n, F) is n — 1 and the derived length is [logyn].

Proof: Lemma 3 and simple induction prove the theorem. In fact, for © = 1 and k = 0 the
theorem is trivially true. If it holds for some ¢ and k then

7i+1(UT(n7 F)) = [fyi(UT(n7F))771(UT(n7F))] = [UTi(nvF)ﬂUTl(nvF)] = UTi+1(n7 F)

and
= UT2k+2k (TL, F) = UT2k+1 (TL, F)

Since UT;(n, F') = 1 iff i > n, the last claim of the theorem follows. O

Remark. Note that our solution works over an arbitrary field. The group UT(n, F) is a
finite p—group iff F' is a finite field of characteristic p.



