
Homework 1

Solutions

Problem 1. Let G be a group with a normal subgroup N and a (not necessarily normal)
subgroup H. Suppose that N has a chain of normal (in N) subgroups

N1 = N ≥ N2 ≥ N3 ≥ ...

such that [H,Ni] ⊆ Ni+1 for all i. Prove that [γi(H), Nj] ⊆ Ni+j for all i, j.

Solution: Note that the only elements involved in the problem are those in the subgroup
NH. Replacing G by NH if necessary, we may assume that G = NH. Note that the inclusion
[H,Ni] ⊆ Ni+1 ⊆ Ni implies that H normalizes each Ni. Since Ni is normal in N , both H
and N normalize Ni, so Ni is normal in NH = G.

The proof that [γi(H), Nj] ⊆ Ni+j is by induction on i and it is exactly the same as the
proof given in class for the special case when H = N = G and Nj = γj(G). Since H = γ1(H),
the result holds for i = 1 and all j.

Recall that the main tool was the following result: if A,B,C are subgroups of a group G
and K is a normal subgroup of G such that both [C,A,B] and [B,C,A] are contained in K
then [A,B,C] ⊆ K. Recall also that [A,B] = [B,A] for any subsets A, B.

Our goal is to show that [γi+1(H), Nj] ⊆ Ni+j+1. Note that γi+1(H) = [γi(H),H] so
[γi+1(H), Nj] = [γi(H),H,Nj]. Applying our main tool with A = γi(H), B = H, C = Nj and
K = Ni+j+1 we see that it suffices to show that [Nj , γi(H),H] ⊆ Ni+j+1 and [H,Nj , γi(H)] ⊆
Ni+j+1. Observe that

[Nj , γi(H),H] = [[Nj, γi(H)],H] = [H, [γi(H), Nj]] ⊆ [H,Ni+j] ⊆ Ni+j+1,

where we used the inductive assumption that [γi(H), Nj ] ⊆ Ni+j. Similarly,

[H,Nj, γi(H)] = [[H,Nj], γi(H)] = [γi(H), [H,Nj]] ⊆ [γi(H), Nj+1] ⊆ Ni+j+1,

where we used the inductive assumption that [γi(H), Nj+1] ⊆ Ni+j+1. This completes the
proof.

Problem 2. Let P be a finite p-group.

a) Prove that if γ2(P ) ∩ z2(P ) is cyclic then γ2(P ) is cyclic.

Solution: Suppose that γ2(P ) is not cyclic. Then, by a result from class, the group
γ2(P ) has an elementary abelian subgroup A of order p2 which is normal in P (note that
γ2(P ) is contained in Frat(P )). Another result from class states that a normal subgroup of
order pk is contained in zk(P ). Thus A ⊆ γ2(P ) ∩ z2(P ), which contradicts the assumption
that γ2(P ) ∩ z2(P ) is cyclic.

b) If the center of [P,P ] is cyclic then [P,P ] is cyclic.

Solution: Since [P,P ] = γ2(P ) commutes with z2(P ), the group γ2(P )∩z2(P ) is contained
in the center of [P,P ], hence it is cyclic. By part a) the group [P,P ] is cyclic as well.

c) If the center of Frat(P ) is cyclic then Frat(P ) is cyclic.

Solution: Suppose that Frat(P ) is not cyclic. Then, by a result from class, Frat(P ) has
an elementary abelian subgroup B of order p2 which is normal in P . The group P acts by
conjugation on B so P/CP (B) embeds into the group of automorphisms of B, which has
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order (p2 − 1)(p2 − p) = p(p − 1)(p2 − 1). It follows that the group P/CP (B) has order
at most p. Thus either CP (B) = P or CP (B) is a maximal subgroup of P . In both cases
Frat(P ) ⊆ CP (B). But this implies that B is in the center of Frat(P ), which is cyclic, a
contradiction.

Problem 3. Let P be a finite p-group such that [P (1) : P (2)] ≤ p2. Prove that the commutator
subgroup P (1) of P is abelian.

Solution: Suppose that P (1) = [P,P ] is not abelian, i.e. that P (2) is not trivial. Then
P (2) has a subgroup M of index p which is normal in P . Let Q = P/M . Then Q(1) = P (1)/M
and Q2 = P (2)/M . Thus |Q(2)| = p and [Q(1) : Q(2)] = [P (1) : P (2)] ≤ p2. In particular,
|Q(1)| ≤ p3. Since Q(2) is not trivial, the group Q(1) is not abelian and therefore we must
have |Q(1)| = p3. There is a normal subgroup B of Q of order p2 such that B ⊆ Q(1) = γ2(Q).
It follows that B ⊆ z2(Q). Since γ2(Q) and z2(Q) commute, B is a central subgroup of Q(1).
Since Q(1)/B is cyclic (has order p), the group Q(1) is abelian, a contradiction.

Problem 4. The lower p-central series of G is the descending central series

G = λ1(G) ≥ λ2(G) ≥ λ3(G) ≥ ...

of subgroups of G, where λi+1(G) = [λi(G), G]λi(G)p for all i. Prove that

a) If G = G1 ≥ G2 ≥ G3 ≥ ... is a descending central series such that Gi/Gi+1 has exponent
p for all i, then λi(G) ⊆ Gi for all i.

Solution: The proof is by induction on i. For i = 1 the result holds trivially. Suppose that
λi(G) ⊆ Gi for some i. Since the Gj ’s form a central (descending) series, we have [λi(G), G] ⊆
[Gi, G] ⊆ Gi+1. Furthermore, λi(G)p ⊆ Gp

i ⊆ Gi+1, the last inclusion being a consequence of
the assumption that Gi/Gi+1 has exponent p. Thus λi+1(G) = [λi(G), G]λi(G)p ⊆ Gi+1.

b) [λi(G), λj(G)] ≤ λi+j(G) for all i, j.

Solution: We prove that [λi(G), λj(G)] ≤ λi+j(G) by induction on i. The proof is similar
to the solution of Problem 1, but slightly more complicated. For i = 1 the result holds for all
j since [G,λj(G)] ≤ λ1+j(G) from the definition of the lower p-central series. Suppose that
[λi(G), λj(G)] ≤ λi+j(G) for some i and all j.

We need the following simple result: if A,B,C are normal subgroups of a group G then
[AB,C] = [A,C][B,C]. It is an immediate consequence of the identity [ab, c] = [a, c]b[b, c] =
[ab, cb][b, c]. Since the groups λi(G), [λi(G), G] and λi(G)p are all normal (even characteristic)
in G, we see that

[λi+1(G), λj(G)] = [[λi(G), G]λi(G)p, λj(G)] = [[λi(G), G], λj(G)][λi(G)p, λj(G)].

Thus we need to show that [[λi(G), G], λj(G)] ⊆ λi+j+1(G) and [λi(G)p, λj(G)] ⊆ λi+j+1(G).
In order to show that [[λi(G), G], λj(G)] ⊆ λi+j+1(G) we use the same technique we

employed in the solution to Problem 1. It suffices to show that both [λj(G), λi(G), G] and
[G,λj(G), λi(G)] are contained in λi+j+1(G). We have

[λj(G), λi(G), G] = [[λj(G), λi(G)], G] = [[λi(G), λj(G)], G] ⊆ [λi+j(G), G] ⊆ λi+j+1(G)

and

[G,λj(G), λi(G)] = [[λj(G), G], λi(G)] ⊆ [λj+1(G), λi(G)] = [λi(G), λj+1(G)] ⊆ λi+j+1(G),
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which proves that indeed [[λi(G), G], λj(G)] ⊆ λi+j+1(G).
It remains to prove that [λi(G)p, λj(G)] ⊆ λi+j+1(G). Recall that Hk denotes the sub-

group of H generated by all k-th powers of elements in H. Thus every element of λi(G)p is
of the form ap

1a
p
2...a

p
k for some a1, ..., ak ∈ λi(G). Observe that if x, y ∈ λi(G) and z ∈ λj(G)

then [x, z], [y, z] are in λi+j(G) by the inductive assumption. Since [G,λj(G)] ≤ λ1+j(G), we
see that the elements of λi+j(G) are central modulo λ1+i+j(G). Thus for a, b ∈ λi(G) and
any c ∈ λj(G) we have

[ab, c] = [a, c]b[b, c] ≡ [a, c][b, c] mod λi+j+1(G).

It follows that for a = ap
1a

p
2...a

p
k ∈ λi(G)p and any c ∈ λj(G) we have

[a, c] = [ap
1a

p
2...a

p
k.c] ≡ [a1, c]

p[a2, c]
p...[ak, c]

p mod λi+j+1(G).

Since [as, c] ∈ λi+j(G) for s = 1, ..., k we see that [as, c]
p ∈ λ1+i+j(G) for all s. Thus

[a1, c]
p[a2, c]

p...[ak, c]
p ∈ λ1+i+j(G) and therefore [a, c] ∈ λ1+i+j(G). This proves that [λi(G)p, λj(G)] ⊆

λi+j+1(G) and completes our proof of b).

c) If λ2(G) = γ2(G) then λi(G) = γi(G) for all i.

Solution: Note that γi(G) ⊆ λi(G) for all i, since G = λ1(G) ≥ λ2(G) ≥ λ3(G) ≥ ...
is a central series. By part a), in order to show that λi(G) ⊆ γi(G) it suffices to prove
that γi(G)/γi+1(G) has exponent p. The group γi(G)/γi+1(G) is abelian, so it would be
enough to show that it is generated by elements of order p. For i = 1 this follows from the
assumption that λ2(G) = γ2(G). Suppose that i ≥ 2. The group γi(G)/γi+1(G) is generated
by elements of the form [g, u]γi+1(G) with g ∈ G and u ∈ γi−1(G). Note that for g, h ∈ G and
u ∈ γi−1(G) we have [gh, u] = [g, u]h[h, u] = [g, u][[g, u], h][h, u]. Since [[g, u], h] ∈ γi+1(G), we
conclude that [gh, u]γi+1(G) = [g, u]γi+1(G)[h, u]γi+1(G). Consequently, ([g, u]γi+1(G))p =
[gp, u]γi+1(G). It follows from the equality λ2(G) = γ2(G) that gp ∈ γ2(G) for all g ∈ G.
Thus [gp, u] ∈ γi+1(G) for all g ∈ G and u ∈ γi−1(G). Hence ([g, u]γi+1(G))p = 1 for all
g ∈ G and u ∈ γi−1(G), which proves that the group γi(G)/γi+1(G) is generated by elements
of order p.

Problem 5. Prove that if a finite p-group has an abelian subgroup of index p2 then it has a
normal abelian subgroup of index p2.

Solution: Let A be an abelian subgroup of index p2 in P . Suppose that A is not normal
and let M be a maximal subgroup of P which contains A. Thus M is normal in P and
A is maximal in M . Since A is not normal, there is g ∈ P such that gAg−1 6= A. Note
that gAg−1 ⊆ gMg−1 = M . Thus A and gAg−1 are distinct maximal subgroups of M so
A(gAg−1) = M . Since A and gAg−1 are abelian, the group K = A ∩ gAg−1 is central in
A(gAg−1) = M . Clearly K has index p2 in M so the center Z(M) of M has index at most
p2. If the index [M : Z(M)] ≤ p then M is abelian and there is as a subgroup B of index
p in M which is normal in P , so B is an abelian normal subgroup of P of index p2. If the
index [M : Z(M)] = p2 then since both M and Z(M) are normal in P , there is a subgroup
Z(M) < C < M normal in P . Clearly C has index p2 in P and is abelian (since C/Z(M) is
cyclic). Thus in any case, P has a normal abelian subgroup of index p2.

Problem 6. Let p be a prime and let Fp be the field with p-elements. Find the lower central
series and the derived series of the group of n × n upper-triangular matrices over Fp with all
diagonal entries equal to 1.
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Solution: Denote the group of n × n upper-triangular matrices over a field F with
all diagonal entries equal to 1 by UT(n, F ) (elements of this group are called unipotent

upper-triangular matrices). Let UTk(n, F ) be the subset of UT(n, F ) which consists of
all unipotent upper-triangular matrices whose first k − 1 diagonals above the main diagonal
are zero. In other words, a unipotent upper-triangular matrix (ai,j) belongs to UTk(n, F ) iff
ai,j = 0 for all i, j such that 0 < j − i < k. Clearly UT1(n, F ) = UT(n, F ) and it is a simple
exercise to show that UTk(n, F ) is a normal subgroup of UT(n, F ) for all k. The simplest
way to do that is to think of elements of UT(n, F ) as linear transformations.

Recall that n × n matrices can be naturally identified with linear transformations on the
vector space V = F n. Denote by Vi the subspace of V which consists of vectors with all but
the first i coordinates equal to 0. Thus V0 = {0}, V1 = {(a, 0, 0, ..., 0) : a ∈ F}, etc. Via the
identification of matrices and linear transformation we have

UTk(n, F ) = {T : V −→ V : (T − I)(Vi) ⊆ Vi−k for all k}

(where we set Vi = {0} for i < 0). In particular, T (Vi) = Vi for all T ∈ UT(n, F ). If
S ∈ UTk(n, F ) then (TST−1 − I)(Vi) = T (S − I)T−1(Vi) = T (S − I)(Vi) ⊆ T (Vi−k) = Vi−k

for any T ∈ UT(n, F ), proving that UTk(n, F ) is a normal subgroup of UT(n, F ).
For any i 6= j let ei,j denote the matrix with i, j-entry 1 and all other entries 0. For

a ∈ F set Ei,j(a) = I + aei,j . This is the familiar elementary matrix: the product Ei,j(a)M
is obtained from M by adding to the i-th row of M the j-th row multiplied by a.

Note that Ei,j(a) ∈ UTk(n, F ) iff j − i ≥ k. The key observation is the following

Lemma 1. The group UTk(n, F ) is generated by the set {Ei,j(a) : j − i ≥ k and a ∈ F}.

Proof: The proof is a simple consequence of the familiar row reduction process. Let
A = (ai,j) ∈ UTk(n, F ). The matrix

B = En−k,n(−an−k,n)...E2,k+2(−a2,k+2)E1,k+1(−a1,k+1)A

has 0’s in the k − th diagonal over the main diagonal, i.e all the entries of the form i, i + k
are zero. But this matrix belongs to UTk(n, F ), since all the elementary matrices used are in
this group. Thus B ∈ UTk+1(n, F ). Note that

A = E1,k+1(a1,k+1)E2,k+2(a2,k+2)...En−k,n(an−k,n)B,

This shows that if Lemma 1 holds for UTk+1(n, F ) then it also holds for UTk(n, F ). Since
UTn−1(n, F ) = {E1,n(a) : a ∈ F}, Lemma 1 holds for UTn−1(n, F ) and therefore it holds for
all k by (now) obvious induction. 2

Lemma 2. [UTi(n, F ),UTj(n, F )] ⊆ UTi+j(n, F )

Proof: We will use the approach via liner transformations. Let T ∈ UTi(n, F ) and
S ∈ UTj(n, F ). Then

[T, S]− I = T−1S−1TS − I = T−1S−1(TS −ST ) = T−1S−1((T − I)(S − I)− (S − I)(T − I)).

Now (T − I)(S − I)(Vk) ⊆ (T − I)(Vk−j) ⊆ Vk−i−j and likewise (S − I)(T − I)(Vk) ⊆ Vk−i−j .
It follows that ((T − I)(S − I) − (S − I)(T − I))(Vk) ⊆ Vk−i−j and therefore

([T, S]− I)(Vk) = T−1S−1((T − I)(S − I)− (S − I)(T − I))(Vk) ⊆ T−1S−1(Vk−i−j) ⊆ Vk−i−j .

This shows that [T, S] ∈ UTi+j(n, F ). 2
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We will prove now that in Lemma 2 equality holds. By Lemma 1, it suffices to show that
Es,t(a) ∈ [UTi(n, F ),UTj(n, F )] for all a ∈ F and all s, t such that t − s ≥ i + j. Recall the
following simple but very useful identities:

[Ek,l(a), Ep,q(b)] =











1 if k 6= q and l 6= p;

Ek,q(ab) if l = p and k 6= q;

Ep,l(−ab) if k = q and l 6= p

In particular, if t − s ≥ i + j then t − (s + i) ≥ j so Es,t(a) = [Es,s+i(1), Es+i,t(a)] and
Es,s+i(1) ∈ UTi(n, F ), Es+i,t(a) ∈ UTj(n, F ). Thus we proved

Lemma 3. [UTi(n, F ),UTj(n, F )] = UTi+j(n, F )

It is now not hard to derive the following

Theorem 1. γi(UT(n, F )) = UTi(n, F ) and UT(n, F )(k) = UT2k(n, F ). The nilpotency

class of UT(n, F ) is n − 1 and the derived length is dlog2 ne.

Proof: Lemma 3 and simple induction prove the theorem. In fact, for i = 1 and k = 0 the
theorem is trivially true. If it holds for some i and k then

γi+1(UT(n, F )) = [γi(UT(n, F )), γ1(UT(n, F ))] = [UTi(n, F ),UT1(n, F )] = UTi+1(n, F )

and
UT(n, F )(k+1) = [UT(n, F )(k),UT(n, F )(k)] = [UT2k(n, F ),UT2k(n, F )] =

= UT2k+2k(n, F ) = UT2k+1(n, F ).

Since UTi(n, F ) = 1 iff i ≥ n, the last claim of the theorem follows. 2

Remark. Note that our solution works over an arbitrary field. The group UT(n, F ) is a
finite p−group iff F is a finite field of characteristic p.
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