
Homework 2

Solutions

Problem 1. Let F be a field.

a) Let φ : UT(n, F ) −→ UT(n − 1, F ) be a function such that φ(A) is the matrix obtained
from A after removing its last row and its last column. Prove that φ is a surjective group
homomorphism.

b) Let ψ : UT(n, F ) −→ UT(n − 1, F ) be a function such that ψ(A) is the matrix obtained
from A after removing its first row and its first column. Prove that ψ is a surjective group
homomorphism.

Solution: Both a) and b) follow easily from the definition of matrix multiplication. A
more conceptual argument is based on interpretation of UT(n, F ) as linear transformations.
Denote by Vi the subspace of V which consists of vectors with all but the first i coordinates
equal to 0. Thus V0 = {0}, V1 = {(a, 0, 0, ..., 0) : a ∈ F}, etc. Via the identification of
matrices and linear transformation we have

UTk(n, F ) = {T : V −→ V : (T − I)(Vi) ⊆ Vi−k for all k}.

The map φ : UT(n, F ) −→ UT(n−1, F ) is just the restriction map which sends T ∈ UTk(n, F )
to its restriction to the space Vn−1. Similarly, ψ sends T to the transformation induced by T
on the quotient space V/V1.

c) Prove that zi(UT(n, F )) = UTn−i(n, F ) = γn−i(UT(n, F )).

Solution. In Problem 6 of the first assignment we proved that UTi(n, F ) = γi(UT(n, F )).
It follows that the group UT(n, F ) is nilpotent of class n − 1. We have seen in class that
γn−i(G) ⊆ zi(G) for any nilpotent group of class n−1. It remains to prove that zi(UT(n, F )) ⊆
UTn−i(n, F ).

The first step is to note that the center z1(UT(n, F )) ⊆ UTn−1(n, F ). Suppose then that
A = (ai,j) is in the center. In particular, A commutes withe all the elementary matrices
Ei,j(1), i < j. Suppose that i > 1. For any j > i the 1, j entry of E1,i(1)A equals a1,j + ai,j .
On the other hand, the matrix AE1,i(1) differs from A only at entries in the i-th column so
the 1, j entry of AE1,i(1) is a1,j . It follows that a1,j + ai,j = a1,j , i.e. ai,j = 0. We see that
the non-zero entries of A must be in the first row. Similarly, if j < n then for any i < j
the i, n entry of AEj,n(1) is ai,n + ai,j and the i, n entry of Ej,n(1)A is equal to ai,n. Thus
ai,j = 0, which shows that the non-zero entries of A must be in the last column. Combining
these observations we conclude that the only entry of A which can be non-zero is the 1, n
entry, i.e. A ∈ UTn−1(n, F ).

Now we prove that zi(UT(n, F )) ⊆ UTn−i(n, F ) for all i by induction on n. The case
n = 1 is clear. The key to our argument are the following two useful observations:

• If f : G −→ H is a surjective homomorphism of groups then f(zi(G)) ⊆ zi(H) for all i
(first show it for i = 1 and then use induction on i).

• If f : G −→ H is a surjective homomorphism of groups such that zk(G) ⊆ ker f then
f(zi(G)) ⊆ zi−k(H) for all i. (The assumptions imply that f factors to a homomorphism
f : G/zk(G) −→ H. Since zi(G)/zk(G)) = zi−k(G/zk(G)), the result follows from our
first observation).
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Note now that UTn−i(n, F ) is contained both in the kernel of φ and ψ and therefore
so is the center z1(UT(n, F )). By our second observation, both φ and ψ map zi(UT(n, F ))
into zi−1(UT(n− 1, F )), which is contained in UTn−i(n− 1, F ) by the inductive assumption.
Directly from the definition of ψ and φ we see that if ψ(A) and φ(A) are in UTn−i(n− 1, F )
for some A ∈ UT(n, F ) then A ∈ UTn−i(n, F ). It follows that zi(UT(n, F )) ⊆ UTn−i(n, F )
for all i.

d) Describe the centralizer of UTi(n, F ) in UT(n, F ).

Solution. Let us first make the following general observation.

An n × n matrix A = (ai,j) commutes with Es,t(a), a 6= 0, iff at,l = 0 for all l 6= s, al,s = 0
for all l 6= t and as,s = at,t.

Indeed, the matrices A, Es,t(a)A, and AEs,t(a) have the same entries outside the s-th row
and t-th column. The s, l entry of Es,t(a)A is as,l + aat,l and the m, t entry of this matrix is
am,t for all m 6= s. Likewise, the l, t entry of AEs,t(a) equals aal,s + al,t and the s,m entry of
this matrix is as,m for m 6= t. Comparing the corresponding entries of Es,t(a)A and AEs,t(a)
yields our claim.

Recall now that we have seen in the solution to Problem 6 of the first assignment that
UTk(n, F ) is generated by the matrices Es,t(a) with t − s ≥ k. Thus the centralizer of this
group coincides with the set of matrices which commute with all Es,t(a) such that t− s ≥ k.
Our general observation implies now easily that the centralizer of UTk(n, F ) is the set of
matrices A = (ai,j) ∈ UT(n, F ) such that ai,j = 0 if k < i < j or i < j ≤ n− k.

Problem 2. a) Let G be any group. Prove that G(i) ⊆ γ2i(G) for all i.

Solution. Recall that [γi(G), γj(G)] ⊆ γi+j(G) for all positive integers i, j. Now the result
follows by easy induction. Indeed, it is trivially true for i = 1 and if G(i) ⊆ γ2i(G) then

G(i+1) = [G(i), G(i)] ⊆ [γ2i(G), γ2i(G)] ⊆ γ2i+1(G).

b) Let P be a finite p-group such that P (k) 6= 1. Prove that |P | ≥ p2k+k.

Solution. Recall the following theorem from class:

Let P be a finite p-group and let Q/P be a non-abelian subgroup of γk(P ). Then |Q/[Q,Q]| ≥
pk+1.

For k < i ≤ 0 the group P (i) is non-abelian and contained in γ2i(P ) (by part a)). Thus by
the theorem cited above we have |P (i)/P (i+1)| ≥ p2i+1. Clearly |P (k)| ≥ p. Hence

|P | = |P (k)|
k−1∏

i=0

|P (i)/P (i+1)| ≥ p
k−1∏

i=0

p2i+1 = p2k+k.

Problem 3. Let P be a finite non-abelian p-group such that every proper subgroup of P is
abelian. Prove that P is one of the following groups:

1. the quaternion group of order 8;

2. the semidirect product A o B, where A =< a > is a cyclic group of order pm ≥ p2,
B =< b > is a cyclic group and b−1ab = a1+pm−1

;
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3. < a, b : apm

= bp
k

= [a, b]p = 1, [a, b, a] = 1 = [a, b, b] >.

Hint. Consider elements a, b in P which do not commute and such that the sum of the orders
of a and b is smallest possible.

Solution. We make the following general observation: if < x, y > is a 2-generated group such
that [x, y] is central then every element of < x, y > can be written in the form xuyv[x, y]w for
some integers u, v, w. In fact, note that

(xuyv[x, y]w)(xpyq[x, y]r) = xuyvxpyq[x, y]w+r = xuxpyv[yv, xp]yq[x, y]w+r =

= xu+pyv[y, x]vpyq[x, y]w+r = xu+pyv+q[x, y]w+r−vp.

It follows that elements of the form xuyv[x, y]w form a subgroup and since both x = x1y0[x, y]0,
y = x0y1[x, y]0 belong to this subgroup, it must be the whole group < x, y >.

Consider now the group G =< a, b : apm

= bp
k

= [a, b]p = 1, [a, b, a] = 1 = [a, b, b] >.
Our observation above implies that every element of this group can be written in the form
aubv[a, b]w, where 0 ≤ u < pm, 0 ≤ v < pk, 0 ≤ w < p. Thus G has at most pm+n+1 elements.
On the other hand, the set H = {(u, v, w) : 0 ≤ u < pm, 0 ≤ v < pk, 0 ≤ w < p} with
multiplication defined by

(u, v, w)(p, q, r) = (u+ p, v + q, w + r − vp),

where the operations on first coordinates are modulo pm, on the second coordinate are modulo
pk and on the third coordinate are modulo p, is a group of order pm+k+1 with generators
a = (1, 0, 0), b = (0, 1, 0) of order pm, pk respectively, such that [a, b] = (0, 0, 1) is central
and of order p. Thus this group is a homomorphic image of G, and since the |H| ≥ |G|,
G and H are isomorphic. (Alternatively, consider the group A =< a > × < c >, where
a has order pm and c has order p. There is an automorphism f of order p of A such that
f(a) = ac and f(c) = c. The cyclic group < b > of orderpk has a homomorphism into the
automorphisms of A which sends b to f−1. The corresponding semidirect product Ao < b >
has order pm+k+1, is generated by a, b and [a, b] = c has order p and is central. Thus G is
isomorphic to Ao < b >).

Note that the commutator subgroup of G is generated by conjugates of [a, b], hence it is
cyclic of order p and central. For any x, y ∈ G we have [xp, y] = [x, y]p = 1, so Gp is central.
It follows that FratG = Gp[G,G] is central. If M is a maximal subgroup of G then M/FratG
is cyclic of order p. Since FratG is central, we conclude that M is abelian. This shows that
every proper subgroup of G is abelian.

Note that the semidirect product A o B, where A =< a > is a cyclic group of order
pm ≥ p2, B =< b > is a cyclic group of order pk and b−1ab = a1+pm−1

has generators a, b
such that [a, b] = apm−1

is central and of order p. Thus AoB is a homomorphic image of G
and therefore every proper subgroup of it is abelian. It is clear that every proper subgroup of
the quaternion group of order 8 is abelian. This shows that the groups listed in the problem
have all proper subgroups abelian.

Suppose now that P is a non-abelian p-group with all proper subgroups abelian. We make
several observations about P . Suppose that a, b ∈ P do not commute. Then the subgroup
generated by a, b is not abelian, so must be equal to P . Thus

1. P is 2-generated and any two non-commuting elements in P generate P .

Let a, b be generators of P . Note that the subgroup < a, [a, b] > is proper (otherwise P
would be cyclic), so a commutes with [a, b]. Same argument shows that b commutes with
[a, b]. Thus [a, b] is cental. Since γ2(P ) is generated by conjugates of [a, b] we get
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2. γ2(P ) is contained in the center of P and therefore P has class 2.

Observe now that for any x ∈ P the subgroup< xp, a > is proper (otherwise, since xp ∈ FratP ,
we would have P/FratP is cyclic, and therefore also P would be cyclic). Thus xp commutes
with a. Likewise, xp commutes with b, so xp is central. This shows that P p is central. Since
FratP = γ2(P )P p, we get

3. FratP is contained in the center of P .

Note that b−1ab = a[a, b], so ap = b−1apb = ap[a, b]p (since [a, b] and ap are central). Thus
[a, b]p = 1, which implies that

4. γ2(P ) is cyclic of order p.

The group P/γ2(P ) is abelian, 2-generated but not cyclic. Thus P/γ2(P ) is of the form
< a > × < b >(i.e. a product of two cyclic groups). We may choose our generators a, b of
P such that a, b are images of a, b in P/γ2(P ) (since γ2(P ) is a subgroup of Frat(P )). Let
the orders of a, b be pm, pk respectively. We may assume that m ≥ k. Since [a, b] is central

and has order p, the group P is a homomorphic image of G =< a, b : apm

= bp
k

= [a, b]p =
1, [a, b, a] = 1 = [a, b, b] >.

Suppose now that neither < a > nor < b > contain [a, b]. Then the orders of a, b are pm,
pk respectively. It follows that P/γ2(P ) has order pm+k, so |P | = pm+k+1 = |G|. Thus P is
isomorphic to G.

Suppose that [a, b] ∈< a > but [a, b] 6∈< b >. Thus < a > is a normal subgroup of
P . Furthermore, [a, b] = apm−1l for some l prime to p. There is d such that p|(dl − 1)
and then [a, bd] = apm−1

. Replacing b by bd we may assume that [a, b] = apm−1

. Note that
< a > ∩ < b >= 1 (any element in this intersection must be trivial in P/γ2(P ), so belongs
to γ2(P ) =< [a, b] >). It follows that P is the semidirect product AoB, where A =< a > is
a cyclic group of order pm ≥ p2, B =< b > is a cyclic group and b−1ab = a1+pm−1

.
Suppose now that both < a > and < b > contain [a, b]. Thus [a, b] = apm−1n = bp

k−1l for

some l, n prime to p. If p is odd then P is regular (since it has class 2) so (apm−knb−l)pk−1

= 1.
If p = 2 then (xy)2 = x2y2[y, x] (since [x, y] is central) for any x, y ∈ P . Recall that x2 and y2

are central and therefore (xy)2
j

= x2j

y2j

for any x, y ∈ P and any j ≥ 2. Ifm > k then apm−kn

is central and again (apm−knb−l)pk−1

= 1. If m = k > 2 then again (apm−knb−l)pk−1

= 1. In all

these cases the order of b
−l

is pk−1, so the order of apm−knb
−l

is at lest pk−1 ant therefore the
element b′ = apm−knb−l has order exactly pk−1 and [a, b] does not belong to < b′ >. Clearly
a and b′ generate P and replacing b by b′ we arrive at the case already considered, in which
P is the semidirect product A o B, where A =< a > is a cyclic group of order pm ≥ p2,
B =< b > is a cyclic group and b−1ab = a1+pm−1

.
It remains to consider the case when p = 2, k = m = 2 and both < a >, < b > contain

[a, b]. Thus P is a non-abelian group of order 8 with two distinct cyclic subgroups of order 4,
so P is the quaternion group of order 8.

Problem 4. Let G be a group generated by a set S.

a) Show that γk(G) is generated by the set {[x1, ..., xk]
g : xi ∈ S for i = 1, 2, ..., k and g ∈ G}.

Solution. Let Gk be the subgroup of G generated by the set {[x1, ..., xk]
g : xi ∈ S for i =

1, 2, ..., k and g ∈ G}. Clearly Gk / G. Since [x1, ..., xk]
g = [xg

1, ..., x
g
k] ∈ γk(G), we have

Gk ⊆ γk(G).
Suppose that Gk = γk(G) for some k. Consider the group G/Gk+1. For a ∈ G we denote
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by a the image of a in G/Gk+1. Note that [x1, ..., xk, xk+1] = [x1, ..., xk+1] = 1 for any xi ∈ S.
It follows that [x1, ..., xk] commutes with x for all x ∈ S. But the elements x, x ∈ S, generate
G/Gk+1. Thus [x1, ..., xk] is central in G/Gk+1 for any xi ∈ S. Since the center is a normal
subgroup, we have [x1, ..., xk]g = [x1, ..., xk]

g is central for all xi ∈ S and all g ∈ G. This
shows that the image of Gk in G/Gk+1 is central. Thus

γk+1(G) = [γk(G), G] = [Gk, G] ⊆ Gk+1 ⊆ γk+1(G),

so γk+1(G) = Gk+1. The result follows then by induction on k.

b) Prove that γk(G) is generated by the set {[x1, ..., xk] : xi ∈ S for i = 1, 2, ..., k} ∪ γk+1(G).

Solution. Note that [x1, ..., xk]
g = [x1, ..., xk][x1, ..., xk, g] and [x1, ..., xk, g] ∈ γk+1(G). Thus

the group generated by the set {[x1, ..., xk] : xi ∈ S for i = 1, 2, ..., k} ∪ γk+1(G) contains the
set {[x1, ..., xk]

g : xi ∈ S for i = 1, 2, ..., k and g ∈ G}, hence also the subgroup generated by
this set, which by a) equals γk(G). Since the reversed inclusion is clearly true (i.e. the group
generated by the set {[x1, ..., xk] : xi ∈ S for i = 1, 2, ..., k} ∪ γk+1(G) is contained in γk(G)),
the result follows.

c) Show that if G is generated by two elements then γ2(G)/γ3(G) is cyclic.

Solution. Let x, y generateG. Thus by b), the group γ2(G) is generated by {[x, x], [x, y], [y, x], [y, y]}∪
γ3(G). Since [x, x] = [y, y] = 1 and [y, x] = [x, y]−1, the group γ2(G) is generated by
{[x, y]} ∪ γ3(G). Thus the factor group γ2(G)/γ3(G) is generated by the image of [x, y],
so it is cyclic.

d) Show that if ai ∈ γmi
(G) then [ak1

1 , a
k2

2 , ..., a
ks
s ] ≡ [a1, a2, ..., as]

k1k2...ks mod γ1+m1+m2+...+ms(G).

Solution. Note first that if a ∈ γm(G) and b ∈ γn(G) then [a, b] ∈ γm+n(G). Thus [a, [a, b]]
and [b, [a, b]] are in γm+n+1(G). In other words, in the group G/γm+n+1(G) the elements a, b

commute with [a, b] = [a, b]. Thus [ak, b
l
] = a, b]kl. This is equivalent to [ak, bl] ≡ [a, b]kl

mod γ1+m+n(G). We have therefore established the result for s = 2.
Now we proceed by induction on s. Assuming the result for s we may write [ak1

1 , a
k2

2 , ..., a
ks
s ] =

[a1, a2, ..., as]
k1k2...ksw for some w ∈ γ1+m1+m2+...+ms(G). Thus

[ak1

1 , a
k2

2 , ..., a
ks
s , a

ks+1

s+1 ] = [[a1, a2, ..., as]
k1k2...ksw, a

ks+1

s+1 ] =

= [[a1, a2, ..., as]
k1k2...ks , a

ks+1

s+1 ][[a1, a2, ..., as]
k1k2...ks , a

ks+1

s+1 , w][w, a
ks+1

s+1 ].

Note that [a1, a2, ..., as] ∈ γm1+m2+...+ms(G). Thus

[[a1, a2, ..., as]
k1k2...ks , a

ks+1

s+1 , w] ∈ γm1+m2+...+ms+ms+1+1+m1+m2+...+ms(G) ⊆ γ1+m1+m2+...+ms+ms+1
(G)

and [w, a
ks+1

s+1 ] ∈ γ1+m1+m2+...+ms+ms+1
(G). Hence

[[ak1

1 , a
k2

2 , ..., a
ks
s , a

ks+1

s+1 ] ≡ [[a1, a2, ..., as]
k1k2...ks , a

ks+1

s+1 ] mod γ1+m1+m2+...+ms+ms+1
(G).

Since [a1, a2, ..., as]γm1+m2+...+ms(G), the case s = 2 (which we have established) implies that

[[a1, a2, ..., as]
k1k2...ks , a

ks+1

s+1 ] ≡ [[a1, a2, ..., as], as+1]
k1k2...ksks+1 =

= [a1, a2, ..., as, as+1]
k1k2...ksks+1 mod γ1+m1+m2+...+ms+ms+1

(G),

and this proves the result for s+ 1.
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Problem 5. Show that (xy)3 ≡ x3y3[y, x]3[y, x, x][y, x, y]5 mod γ4(G) for any group G and
any x, y ∈ G.

Solution. Suppose that γ4(G) = 1. Then γ2(G) is abelian (since [γ2, γ2] ⊆ γ4). Note that

yxyx = xy[y, x]xy[y, x] = xyx[y, x][y, x, x]y[y, x] = xxy[y, x][y, x][y, x, x]y[y, x] =

= x2y[y, x][y, x]y[y, x][y, x, x] = x2y[y, x]y[y, x][y, x, y][y, x][y, x, x] =

= x2yy[y, x][y, x, y][y, x][y, x, y][y, x][y, x, x] = x2y2[y, x]3[y, x, x][y, x, y]2.

Thus

x3y3 = x(yxyx)y = xx2y2[y, x]3[y, x, x][y, x, y]2y = x3y2[y, x]3y[y, x, x][y, x, y]2 =

= x3y2[y, x][y, x]y[y, x][y, x, y][y, x, x][y, x, y]2 = x3y2[y, x]y[y, x][y, x, y][y, x][y, x, x][y, x, y]3 =

= x3y2y[y, x][y, x, y][y, x]2[y, x, x][y, x, y]4 = x3y3[y, x]3[y, x, x][y, x, y]5

Problem 6. Let P be a regular p-group of exponent pk such that the subgroup Ωk−1(P ) is
maximal. Show that P is generated by a set of elements of order exactly pk. Prove that there
is no finite p-group H such that P is isomorphic to H/Z(H).

Solution. Note that an element of P has order pk iff it does not belong to Ωk−1(P ). If P
has order pn then Ωk−1(P ) has order pn−1 and therefore there are pn − pn−1 ≥ pn−1 elements
of order pk. The subgroup generated by these elements has at least pn−1 + 1 elements (the
trivial element is not in the generating set), so it must be the whole group P .

Since P is regular, we have |P | = |Ωk−1(P )||P pk−1

|. Thus P pk−1

is cyclic of order p. Let

a be a generator of P pk−1

. Note that if g 6∈ Ωk−1(P ) then gpk−1

= al for some l prime to p.
Suppose that f : H −→ P is a surjective homomorphism such that H is a p-group

and ker f is the center of H. Chose any u ∈ H such that f(u) = a. If h ∈ H is such

that f(h) 6∈ Ωk−1(P ) then f(hpk−1

) = f(h)pk−1

= al = f(ul) for some l prime to p. Thus

ul = hpk−1

z for some z in the center of H. It follows that h commutes with ul. Since l
is prime to p, we have < u >=< ul > and consequently h commutes with u. If g ∈ H is
such that f(g) ∈ Ωk−1(P ) then f(hg) 6∈ Ωk−1(P ). Thus both h and hg commute with u and
therefore g also commutes with u. This means that every element of H commutes with u, so
u ∈ Z(H) = ker f . This is however not possible since f(u) = a 6= 1.
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