Homework 2
Solutions

Problem 1. Let F be a field.

a) Let ¢ : UT(n,F) — UT(n — 1, F) be a function such that ¢(A) is the matrix obtained
from A after removing its last row and its last column. Prove that ¢ is a surjective group
homomorphism.

b) Let ¢ : UT(n,F) — UT(n — 1, F') be a function such that ¥ (A) is the matrix obtained
from A after removing its first row and its first column. Prove that v is a surjective group
homomorphism.

Solution: Both a) and b) follow easily from the definition of matrix multiplication. A
more conceptual argument is based on interpretation of UT(n, F') as linear transformations.
Denote by V; the subspace of V' which consists of vectors with all but the first ¢ coordinates
equal to 0. Thus Vy = {0}, Vi = {(a,0,0,...,0) : a € F}, etc. Via the identification of
matrices and linear transformation we have

UTip(n, F)={T:V —V (T —1)(V;) C V,_y for all k}.

The map ¢ : UT(n, F) — UT(n—1, F') is just the restriction map which sends 7" € UTy(n, F')
to its restriction to the space V,,_1. Similarly, 1) sends T to the transformation induced by T’
on the quotient space V/V].

c¢) Prove that 3;(UT(n, F')) = UT,—i(n, F') = vp—i(UT(n, F)).

Solution. In Problem 6 of the first assignment we proved that UT;(n, F) = ~;(UT(n, F)).
It follows that the group UT(n, F) is nilpotent of class n — 1. We have seen in class that
Yn—i(G) C 3i(G) for any nilpotent group of class n—1. It remains to prove that 3;(UT(n, F')) C
UTn,Z’ (n, F)

The first step is to note that the center 3;(UT(n, F')) C UT,_1(n, F'). Suppose then that
A = (a; ) is in the center. In particular, A commutes withe all the elementary matrices
E; (1), i < j. Suppose that ¢ > 1. For any j > i the 1, j entry of Eq;(1)A equals a1 ; + a; ;.
On the other hand, the matrix AF; ;(1) differs from A only at entries in the i-th column so
the 1,j entry of AF;;(1) is a1 ;. It follows that a1 ; + a;; = a1, i.e. a;; = 0. We see that
the non-zero entries of A must be in the first row. Similarly, if j < n then for any i < j
the i,n entry of AE; (1) is a;n + a;; and the i,n entry of Ej;,(1)A is equal to a;,. Thus
a; ; = 0, which shows that the non-zero entries of A must be in the last column. Combining
these observations we conclude that the only entry of A which can be non-zero is the 1,n
entry, i.e. A€ UT,_1(n, F).

Now we prove that 3,(UT(n,F)) C UT,_;(n, F) for all i by induction on n. The case
n =1 is clear. The key to our argument are the following two useful observations:

o If f: G — H is a surjective homomorphism of groups then f(3,(G)) C 3;(H) for all ¢
(first show it for ¢ = 1 and then use induction on 7).

o If f: G — H is a surjective homomorphism of groups such that 3x(G) C ker f then
fG3i(G)) C 3,k (H) for all i. (The assumptions imply that f factors to a homomorphism
f:G/3x(G) — H. Since 3,(G)/3x(G)) = 3i—k(G/3x(G)), the result follows from our
first observation).



Note now that UT,_;(n, F') is contained both in the kernel of ¢ and v and therefore
so is the center 3;(UT(n, F')). By our second observation, both ¢ and ¢ map 3;(UT(n, F))
into 3;—1(UT(n — 1, F')), which is contained in UT,,_;(n — 1, F) by the inductive assumption.
Directly from the definition of ¢ and ¢ we see that if ¥)(A) and ¢(A) are in UT,,_;(n — 1, F)
for some A € UT(n,F) then A € UT,,_;(n, F). It follows that 3;(UT(n, F)) C UT,_;(n, F)
for all i.

d) Describe the centralizer of UT;(n, F') in UT(n, F).
Solution. Let us first make the following general observation.

An n x n matric A = (a; ;) commutes with Es¢(a), a # 0, iff a;y =0 for alll # s, a1 =0
foralll #t and as s = ag.

Indeed, the matrices A, E,;(a)A, and AE,¢(a) have the same entries outside the s-th row
and t-th column. The s,[ entry of E,;(a)A is as; + aay; and the m,t entry of this matrix is
am, for all m # s. Likewise, the [t entry of AE,(a) equals aq; s + a;+ and the s, m entry of
this matrix is as,, for m # t. Comparing the corresponding entries of Es;(a)A and AE;(a)
yields our claim.

Recall now that we have seen in the solution to Problem 6 of the first assignment that
UTg(n, F) is generated by the matrices Es;(a) with t —s > k. Thus the centralizer of this
group coincides with the set of matrices which commute with all E;¢(a) such that ¢t —s > k.
Our general observation implies now easily that the centralizer of UTg(n, F') is the set of
matrices A = (a; ;) € UT(n, F) such that a; ; =0if k <i<jori<j<n-—k.

Problem 2. a) Let G be any group. Prove that G(®) C ~,:(G) for all i.

Solution. Recall that [v;(G),7;(G)] € 7i+;(G) for all positive integers i, j. Now the result
follows by easy induction. Indeed, it is trivially true for i = 1 and if G® C Y9i (G) then

G = (GO GD] C [19i(G), 79i (G)] € Ygis1(G).

b) Let P be a finite p-group such that P*) £ 1. Prove that |P| > p2“+*.
Solution. Recall the following theorem from class:

Let P be a finite p-group and let Q<P be a non-abelian subgroup of vi(P). Then |Q/[Q, Q]| >
k+1
prTL

For k < i < 0 the group P is non-abelian and contained in v,i(P) (by part a)). Thus by
the theorem cited above we have |P(®)/PG+D| > p2+1. Clearly |P*)| > p. Hence

k—1 k—1
|P| = ‘p(k), H ’P(l)/p(l+1)| 2pHp2 o 2k
=0 1=0

Problem 3. Let P be a finite non-abelian p-group such that every proper subgroup of P is
abelian. Prove that P is one of the following groups:

1. the quaternion group of order 8;

2. the semidirect product A x B, where A =< a > is a cyclic group of order p™ > p?,
B =< b > is a cyclic group and b~ lab = a1+pM71;



3. <ab:a?" =b" = la,b]P =1,]a,b,a] =1 = [a,b,b] >.

Hint. Consider elements a, b in P which do not commute and such that the sum of the orders
of a and b is smallest possible.

Solution. We make the following general observation: if < x,y > is a 2-generated group such
that [z, y] is central then every element of < z,y > can be written in the form z"y"[z,y|* for
some integers u, v, w. In fact, note that

w—+r w+r

= z"2Py"[y", 2]y [z, y]

u+p

(z"y [z, y]") 2Py [z, y]") = 2"y 2Py [z, y]

u+p, v w—+r

= Py ly, a] Py [z, y] y ",y
It follows that elements of the form z%y [z, y]* form a subgroup and since both x = x14°[x, 4],
y = 2%z, y]° belong to this subgroup, it must be the whole group < z,y >.

Consider now the group G =< a,b : a?" = W= [a,b]P = 1,[a,b,a] = 1 = [a,b,b] >.
Our observation above implies that every element of this group can be written in the form
a'b’[a,b]™, where 0 < u < p™, 0 <wv < p¥, 0 < w < p. Thus G has at most p™ "+ elements.
On the other hand, the set H = {(u,v,w) : 0 < u < p™, 0 < v < p*, 0 < w < p} with
multiplication defined by

w—+r—uvp

=X v+q[

(u,v,w)(p,q,r) = (u—l—p,v—l—q,w—i—r—vp),

where the operations on first coordinates are modulo p™, on the second coordinate are modulo
p¥ and on the third coordinate are modulo p, is a group of order p™+*+1 with generators
a = (1,0,0), b = (0,1,0) of order p™, p* respectively, such that [a,b] = (0,0, 1) is central
and of order p. Thus this group is a homomorphic image of G, and since the |H| > |G|,
G and H are isomorphic. (Alternatively, consider the group A =< a > X < ¢ >, where
a has order p™ and c¢ has order p. There is an automorphism f of order p of A such that
f(a) = ac and f(c) = c. The cyclic group < b > of orderp” has a homomorphism into the
automorphisms of A which sends b to f~!. The corresponding semidirect product Ax < b >
has order p™t*+1 is generated by a,b and [a,b] = ¢ has order p and is central. Thus G is
isomorphic to Ax < b >).

Note that the commutator subgroup of G is generated by conjugates of [a, b], hence it is
cyclic of order p and central. For any x,y € G we have [2P,y] = [z,y]? = 1, so GP is central.
It follows that FratG = GP[G, G] is central. If M is a maximal subgroup of G then M /FratG
is cyclic of order p. Since FratG is central, we conclude that M is abelian. This shows that
every proper subgroup of G is abelian.

Note that the semidirect product A x B, where A =< a > is a cyclic group of order
p™ > p?, B =< b > is a cyclic group of order p* and b~tab = al*?" ™" has generators a, b
such that [a,b] = a?" " is central and of order p. Thus A x B is a homomorphic image of G
and therefore every proper subgroup of it is abelian. It is clear that every proper subgroup of
the quaternion group of order 8 is abelian. This shows that the groups listed in the problem
have all proper subgroups abelian.

Suppose now that P is a non-abelian p-group with all proper subgroups abelian. We make
several observations about P. Suppose that a,b € P do not commute. Then the subgroup
generated by a,b is not abelian, so must be equal to P. Thus

1. P is 2-generated and any two non-commuting elements in P generate P.

Let a, b be generators of P. Note that the subgroup < a,|a,b] > is proper (otherwise P
would be cyclic), so a commutes with [a,b]. Same argument shows that b commutes with
[a,b]. Thus [a, b] is cental. Since v2(P) is generated by conjugates of [a, b] we get



2. 72(P) is contained in the center of P and therefore P has class 2.

Observe now that for any « € P the subgroup < aP,a > is proper (otherwise, since 2P € FratP,
we would have P/FratP is cyclic, and therefore also P would be cyclic). Thus P commutes
with a. Likewise, P commutes with b, so zP is central. This shows that PP is central. Since
FratP = ~5(P) PP, we get

3. FratP is contained in the center of P.

Note that b~'ab = a[a, b], so a? = b~'aPb = aP[a,b]P (since [a,b] and aP are central). Thus
[a,b]P = 1, which implies that

4. v9(P) is cyclic of order p.

The group P/~2(P) is abelian, 2-generated but not cyclic. Thus P/v2(P) is of the form
<@ > x < b >(i.e. aproduct of two cyclic groups). We may choose our generators a,b of
P such that @, b are images of a,b in P/v2(P) (since vo(P) is a subgroup of Frat(P)). Let
the orders of a, b be p™, p* respectively. We may assume that m > k. Since [a, b] is central
and has order p, the group P is a homomorphic image of G =< a,b : a?" = W= [a, b]P =
1,[a,b,a] =1 =[a,b,b] >.

Suppose now that neither < a > nor < b > contain [a, b]. Then the orders of @, b are p™,
p* respectively. Tt follows that P/v(P) has order p™**, so |P| = p™+tk*! = |G|. Thus P is
isomorphic to G.

Suppose that [a,b] €< a > but [a,b] €< b >. Thus < a > is a normal subgroup of
P. Furthermore, [a,b] = a?™ "' for some [ prime to p. There is d such that p|(dl — 1)
and then [a,b% = a?™ '. Replacing b by b% we may assume that [a,b] = a?” . Note that
<a>N<b>=1 (any element in this intersection must be trivial in P/y2(P), so belongs
to v2(P) =< [a,b] >). It follows that P is the semidirect product A x B, where A =< a > is
a cyclic group of order p™ > p?, B =< b > is a cyclic group and b~ lab = al+r™

Suppose now that both < a > and < b > contain [a,b]. Thus [a,b] = a?" '™ = b»" ! for
some [, n prime to p. If p is odd then P is regular (since it has class 2) so (a?" "p=1)P" " = 1.
If p = 2 then (2y)? = 22y?[y, x] (since [z,y] is central) for any x,y € P. Recall that z? and y?
are central and therefore (xy)zj =z ij forany x,y € P and any j > 2. If m > k then ap"
is central and again (a?" "b~H)P* " = 1. If m = k > 2 then again (a?" ""b1)P"" = 1. In all
these cases the order of 54 is p*~1, so the order of Epch”gfl is at lest p*~! ant therefore the
element b = " ""b~! has order exactly p*~! and [a, b] does not belong to < b’ >. Clearly
a and b’ generate P and replacing b by b/ we arrive at the case already considered, in which
P is the semidirect product A x B, where A =< a > is a cyclic group of order p™ > p?,
B =< b > is a cyclic group and b~ 'ab = altP" !

It remains to consider the case when p = 2, K = m = 2 and both < a >, < b > contain
[a,b]. Thus P is a non-abelian group of order 8 with two distinct cyclic subgroups of order 4,
so P is the quaternion group of order 8.

Problem 4. Let G be a group generated by a set S.
a) Show that v, (G) is generated by the set {[z1,...,zx] : 2; € Sfori=1,2,....,k and g € G}.

Solution. Let G be the subgroup of G generated by the set {[z1,...,xx]? : x; € S for i =
1,2,...,k and g € G}. Clearly G < G. Since [z1,...,xx]? = [2],...,2]] € (G), we have
G € m(G).

Suppose that G = ,(G) for some k. Consider the group G/Gj1. For a € G we denote



by @ the image of a in G/Gj11. Note that [Ty, ..., Tk, Tpr1] = [21, ..., Tp21] = 1 for any z; € S.
It follows that [Z1, ..., Tx] commutes with T for all z € S. But the elements Z, x € S, generate
G/Gyy1. Thus [Ty, ..., Tk| is central in G/Gjyq for any z; € S. Since the center is a normal
subgroup, we have [z1,...,2x]9 = [Z1,...,Tx)9 is central for all z; € S and all g € G. This
shows that the image of G in G/Gj41 is central. Thus

Ye+1(G) = [(G), G] =[Gk, G] € Gry1 € Me41(G),
80 Vk+1(G) = Gg11. The result follows then by induction on k.
b) Prove that v (G) is generated by the set {[x1,...,z] 1 2, € S for i = 1,2, ..., k} Uvs1(G).

Solution. Note that [x1,...,z;]9 = [z1, ..., zk][z1, ..., Tk, 9] and [z1, ..., Tk, 9] € Yi4+1(G). Thus
the group generated by the set {[x1,...,zx| : ®; € S for i = 1,2, ....;k} U~,11(G) contains the
set {[z1,...,zx]9 1 x; € S fori =1,2,...,k and g € G}, hence also the subgroup generated by
this set, which by a) equals v, (G). Since the reversed inclusion is clearly true (i.e. the group
generated by the set {[x1,...,zx] 1 x; € S fori = 1,2, ..., k} U~ky1(G) is contained in 4 (G)),
the result follows.

c) Show that if G is generated by two elements then v2(G)/v3(G) is cyclic.

Solution. Let z,y generate G. Thus by b), the group v2(G) is generated by { [z, |, [z, y], [y, =], [y, y] }U
v3(G). Since [z,2] = [y,y] = 1 and [y,2] = [z,y]"!, the group 72(G) is generated by
{lz,y]} U3(G). Thus the factor group v2(G)/v3(G) is generated by the image of [z,y],

so it is cyclic.

d) Show that if a; € v, (G) then [a},a52, ..., a¥] = [a1, ag, ..., as]FF2 % mod Y14 my 1 mat...tm. (G).

Solution. Note first that if a € v,,(G) and b € 4, (G) then [a,b] € Ypm4n(G). Thus [a, [a, ]]

and [b, [a, b]] are in Y4+n+1(G). In other words, in the group G/vm+4n+1(G) the elements @, b

commute with [a,b] = [@,b]. Thus [Ek,gl] —= @,b]*. This is equivalent to [a*,b'] = [a, b]*
mod Y14+m4n(G). We have therefore established the result for s = 2.
Now we proceed by induction on s. Assuming the result for s we may write [a]fl , a§2, - a’S“S] =

[a1,ag, ..., as]""2Fsqw for some w € Yi4m,+mo+..+m.(G). Thus

k k
[a]fl,agz, ...,alsf‘“,asfﬁl] = [[a1, a2, ...,as]klk”“ksw,asiﬁl] =

, ks
a§]l€1]€2.../€é +1

ks k.
vagyy e, az, ..o, a,]FLk2-ks +1 ),

= [[a1, az, ..., sag T wl[w, agth

Note that [a1, a2, ..., as| € Ymi+mat..+m,(G). Thus

ks
as]kle...kS s+1

[[alv az, ..., y Agiq ,’UJ] € TYmi+mot...Amstmsp1+1+mi+mo+...+ms (G) - V1+mi+mo+...+ms+msy1 (G)

ks+1
and [wva‘3+1 | € Vi4mitmot..tmst+msrs (G). Hence

[[ k1 ko ks aks+1

af',as?,....ak a '] = [la1, as, ..., ag]"Reke

aks+1]

y Ay mod V+mi+mo+..4ms+msi1 (G)

Since [a1, a2, ..., Gs|VYmy+ma+..+m. (G), the case s = 2 (which we have established) implies that

ks
as]k‘lk'g...ks +1

y Qg1 ] = [[(ll, az, ..., as]a a8+1]k1k2mk3ks+l =

[[a1, a2, ...,

]klkg...ksks+1

= [ala A2y ...y Gy 541 mod V+mi+mo+...+ms+msi1 (G)7

and this proves the result for s + 1.



Problem 5. Show that (zy)® = 2%y[y, z]®[y, 2, z][y, z,y]> mod v4(G) for any group G and
any z,y € G.

Solution. Suppose that 74(G) = 1. Then ~2(G) is abelian (since [y2,72] € 74). Note that

yryr = zyly, z|zyly, ©] = zyxly, 2]ly, =, 2lyly, ©| = 22yly, ][y, ][y, =, 2lyly, 2] =

= 2*yly, 2y, 2lyly. =]y, =, 2] = 2*yly, 2lyly. =]y, 2, ylly, 2] [y, =, 2] =

= 2*yyly, 2]y, . ylly, 2][y. =, yl[y, 2] [y, =, 2] = 2*y° [y, 2] [y, @, 2] [y, =, y]*.
Thus

22y = (yryr)y = 222y? [y, 2’ [y, 2, 2] [y, 2, Y%y = 2392 [y, 2PPyly, @, 2] [y, 2, y)* =

= 2%y [y, 2]y, 2lyly, 2]y, . ylly, =, 2] [y, 2, y)* = 2%y [y, 2lyly, 2][y, =, y][y, =] [y, =, 2]y, =, y)° =
= 2*yPyly, 2)ly, . Ylly, 2y, z, 2]y, z, y)* = 23 [y, 2Py, ., ][y, 2, y)°

Problem 6. Let P be a regular p-group of exponent p* such that the subgroup Qj_;(P) is
maximal. Show that P is generated by a set of elements of order exactly p*. Prove that there
is no finite p-group H such that P is isomorphic to H/Z(H).

Solution. Note that an element of P has order p* iff it does not belong to Qj_1(P). If P
has order p™ then Q;_1(P) has order p"~! and therefore there are p™ — p"~! > p"~! elements
of order p*. The subgroup generated by these elements has at least p"~' + 1 elements (the
trivial element is not in the generating set), so it must be the whole group P.

Since P is regular, we have |P| = [Q_1(P)||P*" |
a be a generator of PP*~'. Note that if g & Q_1(P) then g?* ' = a! for some [ prime to p.

Suppose that f : H — P is a surjective homomorphism such that H is a p-group
and ker f is the center of H. Chose any u € H such that f(u) = a. If h € H is such
that f(h) € Qu_1(P) then f(R?" ") = f(h)P"" = a' = f(u!) for some [ prime to p. Thus
ul = W'z for some z in the center of H. It follows that h commutes with u!. Since I
is prime to p, we have < u >=< u! > and consequently h commutes with u. If g € H is
such that f(g) € Qr—1(P) then f(hg) & Qk—1(P). Thus both h and hg commute with u and
therefore g also commutes with u. This means that every element of H commutes with u, so
u € Z(H) = ker f. This is however not possible since f(u) =a # 1.

. Thus PP" " is cyclic of order p. Let



