Let X be an algebraic variety smooth at a point $a \in X$ and let $\phi_1,...,\phi_n$ be local parameters at a. We have seen that every element f of the local ring \mathcal{O}_a has unique Taylor series expansion in terms of $\phi_1,...,\phi_n$, i.e. there are unique homogeneous polynomials $F_i(x_1,...,x_n), i = 0, 1, 2, ...$ such that F_i has degree i and $f - \sum_{i=0}^N F_i(\phi_1,...,\phi_n) \in \mathfrak{m}_a^{N+1}$ for all integers $N \ge 0$. The assignment $f \mapsto \sum_{i=0}^{\infty} F_i(x_1,...,x_n)$ defines a homomorphism $\Psi : \mathcal{O}_a \longrightarrow R_n$, where $R_n = k[[x_1,...,x_n]]$ is the power series ring in n-variables over k. By the definition of the Taylor series expansion, ker $\Psi = \bigcap_{i=1}^{\infty} \mathfrak{m}^i$. Our goal now is to show that ker $\Psi = \{0\}$. We will see that it is a consequence of a more general and important result about Noetherian rings.

Lemma 1. Let R be a commutative Noetherian ring and let I, J be ideals of R. For any $b \in J$ there is a positive integer N such that $I \cap b^N J \subseteq IJ$.

Proof: Suppose that the result is false and let $b \in J$ be such that for every positive integer n there is $j_n \in J$ such that $b^n j_n \in I - IJ$. Since R is Noetherian, the ideal $\langle j_1, j_2, j_3, ... \rangle$ is generated by $j_1, j_2, ..., j_{N-1}$ for some N. Thus $j_N = \sum_{k=1}^{N-1} r_k j_k$ for some $r_k \in R$. It follows that

$$b^{N}j_{N} = b\sum_{k=1}^{N-1} b^{N-1-k}(b^{k}j_{k}).$$

Each summand of the sum on the right belongs to I so the whole sum is an element of I and since $b \in J$, we see that the right hand side belongs to IJ. This contradicts the assumption that the left hand side is not in IJ. \Box

Theorem 1. Let R be a commutative Noetherian ring and let I, J be ideals of R. There is a positive integer K such that $I \cap J^K \subseteq IJ$.

Proof: Suppose that the theorem is false for R and an ideal J and let I be maximal among the ideals of R such that $I \cap J^n \not\subseteq IJ$ for all n (such I exists since R is Noetherian). Let $b \in J$ and let N be such that $I \cap b^N J \subseteq IJ$ (which exists by Lemma 1). We claim that $b^N \in I$. Indeed, suppose that b^N is not in I. Then the ideal $I + b^N R$ properly contains I, so by the definition of I there is an integer M such that $(I + b^N R) \cap J^M \subseteq (I + b^N R)J =$ $IJ + b^N J$. Thus

$$I \cap J^M = I \cap (I + b^N R) \cap J^M \subseteq I \cap (IJ + b^N J) = IJ + (I \cap b^N J) \subseteq IJ$$

(since $I \cap b^N J \subseteq IJ$), a contradiction.

We showed therefore that for each $b \in J$ there is N such that $b^N \in I$. Let $J = \langle b_1, ..., b_t \rangle$. Then we can find N such that $b_i^N \in I$ for i = 1, 2, ..., t. It follows that $J^{Nt} \subseteq I$ and therefore $I \cap J^{Nt+1} = J^{Nt+1} = J^{Nt}J \subseteq IJ$, a contradiction. \Box

As a simple corollary we get the following important result.

Theorem 2. (Krull's Intersection Theorem) Let R be a local Noetherian ring with maximal ideal \mathfrak{m} . For any ideal T of R we have $\bigcap_{k=1}^{\infty} (T + \mathfrak{m}^k) = T$.

Proof: Replacing R by R/T we reduce to the case when $T = \{0\}$. Now take $I = \bigcap_{k=1}^{\infty} \mathfrak{m}^k$, $J = \mathfrak{m}$ in Theorem 1. Then for some K we have $I = I \cap J^K \subseteq IJ$. Thus $I = \mathfrak{m}I$ and therefore I = 0 by Nakayama's Lemma. \Box

An immediate consequence of the last theorem is the vanishing of ker Ψ . Thus \mathcal{O}_a can be considered as a subring of R_n (note however, that this depends on the choice of local parameters). In particular, \mathcal{O}_a is a domain. Thus **Theorem 3.** If a variety X is smooth at a then \mathcal{O}_a is a domain and therefore only one irreducible component of X contains a.

We proved that R_n is a UFD. We will now show that \mathcal{O}_a is a UFD. To start, let us make some basic observations about the way \mathcal{O}_a is embedded in R_n . We will write R for \mathcal{O}_a and \hat{R} for R_n . Furthermore, \mathfrak{m} and $\hat{\mathfrak{m}}$ denote the maximal ideals of R, \hat{R} respectively. Note that

- (1) $\hat{\mathfrak{m}}^{j} \cap R = \mathfrak{m}^{j}$ for j = 1, 2, ...;
- (2) for any integer j > 0 and any $x \in \hat{R}$ there is $r \in R$ such that $x r \in \hat{\mathfrak{m}}^j$.

Note that (1) and (2) together are equivalent to saying that $\mathfrak{m} \subseteq \hat{\mathfrak{m}}$ and for every j the natural homomorphism $R/\mathfrak{m}^j \longrightarrow \hat{R}/\hat{\mathfrak{m}}^j$ is an isomorphism. To justify (1) observe that elements in \mathfrak{m}^j are exactly those elements of R whose Taylor series have no terms of degree $\langle j, i.e.$ belong to $\hat{\mathfrak{m}}^j$. For (2) note that if $x = \sum_{i=0}^{\infty} F_i(x_1, ..., x_n)$ (F_i homogeneous of degree i), then the image of $r = \sum_{i=0}^{j-1} F_i(\phi_1, ..., \phi_n) \in R$ in \hat{R} is $\sum_{i=0}^{j-1} F_i(x_1, ..., x_n)$ so $x - r = \sum_{i=j}^{\infty} F_i(x_1, ..., x_n) \in \hat{\mathfrak{m}}^j$.

From now on we are going to assume that $R \subseteq \hat{R}$ are local rings which satisfy (1) and (2) and such that R is Noetherian and \hat{R} is a UFD. Our goal is to prove that then R is a UFD too.

(A) For any ideal I of R we have $I\hat{R} \cap R = I$.

In fact, let $x \in I\hat{R} \cap R$ so $x = \sum_{i=1}^{m} a_i x_i$ with $a_i \in I$ and $x_i \in \hat{R}$. For a given integer l > 0there are $r_i \in R$ such that $x_i - r_i = m_i \in \hat{\mathfrak{m}}^l$. Thus $x = \sum_{i=1}^{m} a_i r_i + \sum_{i=1}^{m} a_i m_i$. Clearly $\sum_{i=1}^{m} a_i r_i \in I$ and therefore $\sum_{i=1}^{m} a_i m_i \in R \cap \hat{\mathfrak{m}}^l = \mathfrak{m}^l$. In other words, $x \in I + \hat{\mathfrak{m}}^l$. Since lwas arbitrary, we have $I\hat{R} \cap R \subseteq \bigcap_{k=1}^{\infty} (I + \mathfrak{m}^k) = I$ (by Krull's intersection). The reversed inclusion $I \subseteq I\hat{R} \cap R$ is obvious. \Box

(B) If $a, b \in R$ and b = ac for some $c \in \hat{R}$ then $c \in R$.

Indeed, we have $b \in a\hat{R} \cap R$. Since $a\hat{R} \cap R = aR$ by (A), we see that b = ac' for some $c' \in R$ and therefore c = c' (since \hat{R} is a domain).

(C) If $a, b \in R - \{0\}$ and x is a greatest common divisor of a, b in R then $xu \in R$ for some u invertible in \hat{R} .

This is the key observation. To justify it write $a = x\alpha$, $b = x\beta$, where $\alpha, \beta \in \hat{R}$ are relatively prime. Thus $a\beta = b\alpha$. There are integers i, j such that $\alpha \notin \hat{\mathfrak{m}}^i$ and $\beta \notin \hat{\mathfrak{m}}^j$ (since we are not assuming that \hat{R} is Noetherian, this requires justification: if we had $\alpha \in \hat{\mathfrak{m}}^s$ for every s then also $a \in \hat{\mathfrak{m}}^s$ for every s, i.e. $a \in \hat{\mathfrak{m}}^s \cap R = \mathfrak{m}^s$. Now R is Noetherian, so a = 0 by Krull's intersection, a contradiction.). Let N be an integer larger than both i, j. By Theorem 1, there is M > 0 such that $(a, b) \cap \mathfrak{m}^{MN} \subseteq (a, b)\mathfrak{m}^N$. By (2), we may write $\alpha = a' + r$, $\beta = b' + s$, where $a', b' \in R$ and $r, s \in \hat{\mathfrak{m}}^{MN}$. Thus ab' - ba' = br - as. Note that the left hand side of this equality is in (a, b) and the right hand side belongs to $\hat{\mathfrak{m}}^{MN} \cap R = \mathfrak{m}^{MN}$. Thus both sides belong to $(a, b) \cap \mathfrak{m}^{MN}$, hence also to $(a, b)\mathfrak{m}^N$. Consequently, there are $e, f \in \mathfrak{m}^N$ such that ab' - ba' = ae - bf, i.e. a(b' - e) = b(a' - f). Dividing this equality by x we get $\alpha(b' - e) = \beta(a' - f)$. Since α and β are relatively prime, we have $(a' - f) = \alpha v$ for some $v \in \hat{R}$. Recall now that $a' = \alpha - r$ (D) If p is irreducible in R then it is prime.

In fact, suppose that p|ab in R. Since p is not a unit in R, we have $p \in \mathfrak{m} \subseteq \hat{\mathfrak{m}}$ and therefore p is not a unit in \hat{R} . There is q irreducible in \hat{R} such that q|p in \hat{R} . Thus in \hat{R} we have q|ab and therefore q|a or q|b. Without loss of generality we may assume that q|a. Thus p and a are not relatively prime in \hat{R} . By (C), there is $d \in R$ which is a greatest common divisor of p and a in \hat{R} . But p is irreducible in R, so p/d is invertible and therefore p|a in R.

We showed that irreducible elements in R are prime and since R is Noetherian this implies that R is UFD.