
Let X be an algebraic variety smooth at a point a ∈ X and let φ1,...,φn be local
parameters at a. We have seen that every element f of the local ring Oa has unique Taylor
series expansion in terms of φ1, ..., φn, i.e. there are unique homogeneous polynomials

Fi(x1, ..., xn), i = 0, 1, 2, ... such that Fi has degree i and f −
∑N

i=0
Fi(φ1, ..., φn) ∈ m

N+1
a

for all integers N ≥ 0. The assignment f 7→
∑

∞

i=0
Fi(x1, ..., xn) defines a homomorphism

Ψ : Oa −→ Rn, where Rn = k[[x1, ..., xn]] is the power series ring in n-variables over k. By
the definition of the Taylor series expansion, ker Ψ =

⋂
∞

i=1
m

i. Our goal now is to show
that kerΨ = {0}. We will see that it is a consequence of a more general and important
result about Noetherian rings.

Lemma 1. Let R be a commutative Noetherian ring and let I, J be ideals of R. For any

b ∈ J there is a positive integer N such that I ∩ bNJ ⊆ IJ .

Proof: Suppose that the result is false and let b ∈ J be such that for every positive
integer n there is jn ∈ J such that bnjn ∈ I − IJ . Since R is Noetherian, the ideal
< j1, j2, j3, ... > is generated by j1, j2, ..., jN−1 for some N . Thus jN =

∑N−1

k=1
rkjk for

some rk ∈ R. It follows that

bNjN = b

N−1∑

k=1

bN−1−k(bkjk).

Each summand of the sum on the right belongs to I so the whole sum is an element of
I and since b ∈ J , we see that the right hand side belongs to IJ . This contradicts the
assumption that the left hand side is not in IJ . 2

Theorem 1. Let R be a commutative Noetherian ring and let I, J be ideals of R. There

is a positive integer K such that I ∩ JK ⊆ IJ .

Proof: Suppose that the theorem is false for R and an ideal J and let I be maximal
among the ideals of R such that I∩Jn 6⊆ IJ for all n (such I exists since R is Noetherian).
Let b ∈ J and let N be such that I∩bNJ ⊆ IJ (which exists by Lemma 1). We claim that
bN ∈ I. Indeed, suppose that bN is not in I. Then the ideal I + bNR properly contains I,
so by the definition of I there is an integer M such that (I + bNR)∩ JM ⊆ (I + bNR)J =
IJ + bNJ . Thus

I ∩ JM = I ∩ (I + bNR) ∩ JM ⊆ I ∩ (IJ + bNJ) = IJ + (I ∩ bNJ) ⊆ IJ

(since I ∩ bNJ ⊆ IJ), a contradiction.
We showed therefore that for each b ∈ J there is N such that bN ∈ I. Let J =<

b1, ..., bt >. Then we can find N such that bN
i ∈ I for i = 1, 2, ..., t. It follows that JNt ⊆ I

and therefore I ∩ JNt+1 = JNt+1 = JNtJ ⊆ IJ , a contradiction. 2

As a simple corollary we get the following important result.

Theorem 2. (Krull’s Intersection Theorem) Let R be a local Noetherian ring with

maximal ideal m. For any ideal T of R we have
⋂

∞

k=1
(T + m

k) = T .

Proof: Replacing R by R/T we reduce to the case when T = {0}. Now take I =⋂
∞

k=1
m

k, J = m in Theorem 1. Then for some K we have I = I ∩JK ⊆ IJ . Thus I = mI
and therefore I = 0 by Nakayama’s Lemma. 2

An immediate consequence of the last theorem is the vanishing of kerΨ. Thus Oa can
be considered as a subring of Rn (note however, that this depends on the choice of local
parameters). In particular, Oa is a domain. Thus

1



2

Theorem 3. If a variety X is smooth at a then Oa is a domain and therefore only one

irreducible component of X contains a.

We proved that Rn is a UFD. We will now show that Oa is a UFD. To start, let us
make some basic observations about the way Oa is embedded in Rn. We will write R for
Oa and R̂ for Rn. Furthermore, m and m̂ denote the maximal ideals of R, R̂ respectively.
Note that

(1) m̂
j ∩ R = m

j for j = 1, 2, ...;

(2) for any integer j > 0 and any x ∈ R̂ there is r ∈ R such that x − r ∈ m̂
j.

Note that (1) and (2) together are equivalent to saying that m ⊆ m̂ and for every j the

natural homomorphism R/mj −→ R̂/m̂j is an isomorphism. To justify (1) observe that
elements in m

j are exactly those elements of R whose Taylor series have no terms of degree
< j, i.e. belong to m̂

j . For (2) note that if x =
∑

∞

i=0
Fi(x1, ..., xn) (Fi homogeneous of

degree i), then the image of r =
∑j−1

i=0
Fi(φ1, ..., φn) ∈ R in R̂ is

∑j−1

i=0
Fi(x1, ..., xn) so

x − r =
∑

∞

i=j Fi(x1, ..., xn) ∈ m̂
j .

From now on we are going to assume that R ⊆ R̂ are local rings which satisfy (1) and (2)

and such that R is Noetherian and R̂ is a UFD. Our goal is to prove that then R is a UFD
too.

(A) For any ideal I of R we have IR̂ ∩ R = I.

In fact, let x ∈ IR̂∩R so x =
∑m

i=1
aixi with ai ∈ I and xi ∈ R̂. For a given integer l > 0

there are ri ∈ R such that xi − ri = mi ∈ m̂
l. Thus x =

∑m
i=1

airi +
∑m

i=1
aimi. Clearly∑m

i=1
airi ∈ I and therefore

∑m
i=1

aimi ∈ R∩ m̂
l = m

l. In other words, x ∈ I + m̂
l. Since l

was arbitrary, we have IR̂∩R ⊆
⋂

∞

k=1
(I +m

k) = I (by Krull’s intersection). The reversed

inclusion I ⊆ IR̂ ∩ R is obvious. 2

(B) If a, b ∈ R and b = ac for some c ∈ R̂ then c ∈ R.

Indeed, we have b ∈ aR̂ ∩ R. Since aR̂ ∩ R = aR by (A), we see that b = ac′ for some

c′ ∈ R and therefore c = c′ (since R̂ is a domain).

(C) If a, b ∈ R−{0} and x is a greatest common divisor of a, b in R̂ then xu ∈ R for some

u invertible in R̂.

This is the key observation. To justify it write a = xα, b = xβ, where α, β ∈ R̂ are
relatively prime. Thus aβ = bα. There are integers i, j such that α 6∈ m̂

i and β 6∈ m̂
j

(since we are not assuming that R̂ is Noetherian, this requires justification: if we had
α ∈ m̂

s for every s then also a ∈ m̂
s for every s, i.e. a ∈ m̂

s ∩ R = m
s. Now R is

Noetherian, so a = 0 by Krull’s intersection, a contradiction.). Let N be an integer larger
than both i, j. By Theorem 1, there is M > 0 such that (a, b) ∩ m

MN ⊆ (a, b)mN . By
(2), we may write α = a′ + r, β = b′ + s, where a′, b′ ∈ R and r, s ∈ m̂

MN . Thus
ab′ − ba′ = br − as. Note that the left hand side of this equality is in (a, b) and the right
hand side belongs to m̂

MN ∩ R = m
MN . Thus both sides belong to (a, b) ∩ m

MN , hence
also to (a, b)mN . Consequently, there are e, f ∈ m

N such that ab′ − ba′ = ae − bf , i.e.
a(b′− e) = b(a′− f). Dividing this equality by x we get α(b′− e) = β(a′− f). Since α and

β are relatively prime, we have (a′ − f) = αv for some v ∈ R̂. Recall now that a′ = α − r



3

so α(1 − v) = f + r. Note that f, r ∈ m̂
N and α 6∈ m̂

N (since N > i). Thus (1 − v) is

not invertible in R̂, i.e. it belongs to m̂. Equivalently, v 6∈ m̂, i.e. v is invertible in R̂.
Let u = v−1. Then a = xα = (ux)(vα) = (ux)(a′ − f). Since a and a′ − f are in R, also
ux ∈ R by (B).

(D) If p is irreducible in R then it is prime.

In fact, suppose that p|ab in R. Since p is not a unit in R, we have p ∈ m ⊆ m̂ and therefore

p is not a unit in R̂. There is q irreducible in R̂ such that q|p in R̂. Thus in R̂ we have
q|ab and therefore q|a or q|b. Without loss of generality we may assume that q|a. Thus p

and a are not relatively prime in R̂. By (C), there is d ∈ R which is a greatest common

divisor of p and a in R̂. But p is irreducible in R, so p/d is invertible and therefore p|a in
R.

We showed that irreducible elements in R are prime and since R is Noetherian this implies
that R is UFD.


