
Theorem 1. Let X be an affine irreducible variety of dimension d, f ∈ k[X] a non-zero
function and Xf = {x ∈ X : f(x) = 0}. Then either Xf = ∅ or dimXf = d− 1.

Proof: Let φ : X −→ Ad be a finite surjective morphism. The morphism

ψ : X −→ Ad × A = Ad+1, ψ(x) = (φ(x), f(x))

is finite. Indeed, if π : Ad × A −→ Ad is the projection, then φ = πψ, so the claim follows
from the following simple exercise:

Exercise: If g : X −→ Y and h : Y −→ Z are morphisms of affine varieties and hg is
finite then g is finite.

Thus the image ψ(X) is an irreducible closed subset of Ad+1 of dimension d. It follows that
ψ(X) = V (h) = {x ∈ Ad+1 : h(x) = 0} for some irreducible polynomial h(x1, ..., xd+1) =∑s

i=0 ai(x1, ..., xd)x
i
d+1. Note that a0 6= 0 (otherwise h = Xd+1 and ψ(X) ⊆ Ad × {0}, i.e.

f = 0, which is false).

Exercise: Use the fact that f is integral over k[Ad] to show that as is constant.

Note that if w ∈ Xf then φ(w) = (x1, ..., xd), ψ(w) = (x1, ..., xd, 0) an h(ψ(w)) = 0. Thus
a0(x1, ..., xd) = 0. Conversely, suppose that a0(x1, ..., xd) = 0. Then h(x1, ..., xd, 0) = 0 so
(x1, ..., xd, 0) ∈ ψ(X), i.e there is w ∈ X such that (φ(x), f(x)) = (x1, ..., xd, 0). We see
that w ∈ Xf and φ(w) = (x1, ..., xd). This shows that φ(Xf ) = {x ∈ Ad : a0(x) = 0}.
It follows that if Xf 6= ∅ then φ(Xf ) is not empty and therefore is has dimension d − 1

(being defined by a single equation in Ad). Since φ : Xf −→ φ(Xf ) is finite surjective,
dimXf = d− 1. 2

Exercise: Show that if x = (x1, ...xd) ∈ Ad and t ∈ k is such that h(x1, ..., xd, t) = 0 then
there is w ∈ X such that φ(w) = x and f(w) = t.

Exercise: Use Theorem 1 to show that if X ⊆ Pn is closed of dimension d and F ∈
k[x0, ..., xn] is a homogeneous polynomial (of positive degree) which is not identically 0 on
any component of X then dimXF = d−1, where XF = {x ∈ X : F (x) = 0} (in particular,
XF is non-empty if d > 0).

Theorem 2. Let X be an irreducible algebraic variety of dimension d and let f ∈ OX(X)
be a regular function on X. Then any (non-empty) component of Xf = {x ∈ X : f(x) = 0}
has dimension d− 1.

Proof: Let Z be an irreducible component of Xf (assuming Xf is non-empty). Let U
be an affine open subset of X such that U ∩ Z is not empty. Thus Y = U ∩ Z is an
irreducible component of U ∩Xf = Uf and dimY = dimZ, dimU = dimX. Let V be the
union of all irreducible components of Uf except Y . There is a regular function h ∈ k[U ]
such that h vanishes on V but not on Y . The set D(h) = {x ∈ U : h(x) 6= 0} is an affine
open set in U (hence in X) such that D(h)f = D(h) ∩Xf = D(h)∩ Y is not empty. Thus
dimD(h) = dimX = d and dimD(h)f = dimY = dimZ (since it is a non-empty open
subset of Z). By Theorem 1, dimD(h)f = dimD(h) − 1, i.e. dimZ = d− 1. 2

Corollary 1. If X ⊆ Pn is closed irreducible of dimension d and F ∈ k[x0, ..., xn] is a
homogeneous polynomial (of positive degree) which is not identically 0 on X then every
component of XF = {x ∈ X : F (x) = 0} has dimension d− 1.
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Proof: Let Z be a component of XF and let [z0, ..., zn] be a point of Z. Pick i such that
zi 6= 0 and let U be the affine open subset of X given by xi 6= 0. Then U is irreducible

and Z ∩ U is a non-empty component of Uf , where f = F/xdeg F
i is a non-zero function

on U . Thus dim(Z ∩ U) = dimU − 1 by Theorem 2. Since dim(Z ∩ U) = dimZ and
dimU = dimX, the result follows. 2

Corollary 2. If X is an irreducible variety of dimension d and let f1, ..., fk ∈ OX(X)
be regular functions on X. Then any (non-empty) component of Y = {x ∈ X : f1(x) =
f2(x) = ... = fk(x) = 0} has dimension ≥ d− k.

Proof: Note that a component of Y is a component of Zfk
for some component Z of

{x ∈ X : f1(x) = f2(x) = ... = fk−1(x) = 0} and use induction. 2

Corollary 3. If X ⊆ Pn is locally closed irreducible of dimension d and F1, ..., Fk ∈
k[x0, ..., xn] are homogeneous polynomials (of positive degree) then every (non-empty) com-
ponent of Y = {x ∈ X : F1(x) = ... = Fk(x) = 0} has dimension ≥ d− k.

Proof: Exercise. Use Corollary 2 and the ideas from proof of Corollary 1. 2

Theorem 3. Let X,Y be locally closed irreducible subvarieties of PN of dimensions m,
n respectively. Then every (non-empty) irreducible component of X ∩ Y has dimension
≥ n+m−N . If X, Y are closed and n+m ≥ N then X ∩ Y 6= ∅.

Proof: Let Z be a component of X ∩ Y and let z ∈ Z. Let U be an affine open subset
of PN containing z and isomorphic to AN . Then U ∩ Z is a non-empty component of
(U ∩ X) ∩ (U ∩ Y ). Since the dimensions of U,U ∩ X,U ∩ Y,U ∩ Z coincide with the
dimensions of PN , X, Y, Z respectively, we may assume that X, Y are inside AN . Note
that X ∩ Y is isomorphic to (X × Y ) ∩ ∆, where ∆ is the diagonal in AN × AN . If
x1, ..., xN , y1, ..., yN are coordinates on AN × AN then ∆ is given by zeros of N regular
functions xi − yi, i = 1, 2, ..., N . By Corollary 2, each component of (X × Y ) ∩ ∆ has
dimension ≥ n+m−N . This proves the first part of the theorem.

In order to show the second part, consider the cones CX , CY ofX and Y in AN+1. These
are closed irreducible subset of dimension m+ 1, n+ 1 respectively and both contain the
point (0, 0, ..., 0). By the first part of the theorem, any component of CX ∩ CY which
contains (0, 0, ..., 0) has dimension ≥ (m+ 1) + (n+ 1) − (N + 1) = m+ n+ 1 −N > 0.
Thus there is a non-zero point in this component and its image in PN is a point of X ∩Y .
2

Remark. One may be tempted to replace PN in Theorem 3 by an irreducible variety W
of dimension N . But the results does not hold in such a generality. Consider the quadric
W in P3 given by X2

0 + X2
1 + X2

2 + X2
3 = 0. This is an irreducible subset of dimension

2. Consider the morphisms Fe : P1 −→ W given by Fe([t0, t1]) = [t0, eit0, t1, eit1], where
e = ±1 and i2 = −1. The images of F

−1, F1 are closed irreducible curves on W with empty
intersection. This disproves the second part of the theorem. Passing to cones in A4 gives
a counterexample to the first part. Note that W is birational to P2 but our consideration
shows that it is not isomorphic to P2.

In the proof of Theorem 3 we used the following two simple, but useful facts.

Exercise. Let X, Y be varieties of dimension m,n respectively. Then the dimension
of X × Y is m + n. Hint. Reduce to the case of affine varieties and then find a finite
surjective map onto Am+n (for a different proof consult the book).
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Exercise. Let X ⊆ PN be closed subset of dimension d and let CX be the (closed)
cone of X in AN . Show that dimCX = d + 1. Hint. Reduce to irreducible X, so CX

is irreducible. By the discussion below there is a chain Xi, i = 0, 1, ..., N of irreducible
closed subsets of PN such that dimXi = i and Xd = X. Set Z0 = {(0, 0, ...0)} and
Zi+1 = CXi

. Then Zi form a chain of irreducible, closed subsets of AN+1 of length N + 1.
Since dimAN+1 = N + 1, we see that dimZi = i. Since Zd+1 = CX , the result follows.

We have seen that dimX is equal to the largest n such that X has a chain X0 ( X1 (

... ( Xn ⊆ X such that each Xi is closed and irreducible. We will show now that if X is
irreducible then every chain of irreducible closed subsets of X can be refined to a chain
of length dimX (i.e. all maximal such chains have length dimX). For this it suffices to
show the following

Proposition 1. Let X be irreducible and let Y be a proper irreducible closed subset of X.
Then Y ⊆ Z ⊆ X for some closed irreducible subset Z of dimension dimX − 1.

Proof: Let U be an affine open subset of X such that V = U ∩ Y is not empty. Thus
U is an irreducible affine variety and V is a non-empty proper closed irreducible subset
of V . Thus there is 0 6= f ∈ k[U ] such that V ⊆ Uf . Since V is irreducible, there is
an irreducible component W of Uf containing V . By Theorem 2, dimW = dimU − 1 =
dimX − 1. Let Z be the closure of W in X. Then Z is irreducible, contains Y (since
V is dense in Y ), and Z ∩ U = W , so W is a non-empty open subset of Z and therefore
dimZ = dimW = dimX − 1. 2

In the case when X is affine our obeservation translates into the following algebraic
statement:

If R is a domain finitely generated over an algebraically closed field k then all maximal
chains of prime ideals in R have the same length equal to the Krull dimension of R.

Not every Noetherian ring has the above property and Noetherian rings having the prop-
erty are called catenary. Practically all Noetherian rings one encounters in algebraic
geometry are catenary though. The translation of Theorem 2 for affine X to a statement
about finitely generated k−algebras holds for all catenary rings (Exercise: formulate this
result), and the following slightly weaker version, usually called Krull’s Hauptidealsatz
or Principal Ideal Theorem, holds for all Noetherian rings and it is a cornerstone of the
theory of Krull dimension

Principal Ideal Theorem: Let R be a Noetherian domain and 0 6= f ∈ R a non-unit.
Then every prime ideal of R which is minimal among all prime ideals containing f is also
minimal among all non-trivial prime ideals of R.

Exercise: Derive this result for R = k[X] from Theorem 2.
All the results we proved about dimension of algebraic varieties were derived from the

Noether normalization theorem. Let us formulate here a strong version of this result

Strong Noether Normalization: Let k be a field and let R be a finitely generated
k-algebra of dimension d. Suppose that I1 ⊂ I2 ⊂ ... ⊂ Im is a chain of ideals of R
such that the sequence di = dim(R/Ii) is strictly decreasing. Then R contains a subring
k[x1, ..., xd] with x1, ..., xd algebraically independent over k and such that R is a finitely
generated k[x1, ..., xd]-module and the ideal Ij ∩k[x1, .., xd] is generated by xdj+1, ..., xd for
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j = 1, 2, ...,m. If R is graded (i.e. it is the graded ring of a projective veriety) and the
ideals Ij are homogeneous then the xi can be chosen homogeneous.

We leave it as a challenging exercise to prove this result and to formulate it in the langauge
of affine/projective varieties when k is algebraically closed.

Theorem 4. Let f : X −→ Y be a dominant morphism of irreducible algebraic varieties.
Then

(1) n = dimX ≥ m = dimY ;
(2) every non-empty component of f−1(y) has dimension ≥ n−m for every y ∈ Y ;
(3) there is an open dense set V ⊆ Y such that dim f−1(y) ≤ n−m (i.e. either f−1

is empty or dim f−1(y) = n−m) for every y ∈ V ;

Proof: It suffices to show the theorem in the case when Y is affine (all statements are
local, i.e. if they hold for each member of an open cover of Y then they hold for Y ). If U
is a non-empty affine open set in X then U is dense in X and f(U) is dense in Y ,i.e. the
morphism f : U −→ Y is dominant. In other words, k[Y ] embeds into k[U ] and therefore
k(Y ) is a subfield of k(U) = k(X). It follows that n ≥ m. This proves (1).

Let g be a finite surjective morphism g : Y −→ Am and h = gf . For a point y ∈ Y and
g(y) = a = (a1, ..., am) the fiber h−1(a) is the union of fibers of f over the finite set g−1(a).
Thus every component of f−1(y) is a component of h−1(a). Thus it suffices to show (2)
and (3) for h. In other words, we may assume that Y = Am. Now if x1, ..., xm are the
coordinate functions on Am, then {a} is given by zeros of the m functions fi = xi − ai,
i = 1, 2, ...,m. Thus h−1(a) is the set of zeros of the regular on X functions fih. By
Corollary 2, every non-empty component of h−1(a) has dimension ≥ n−m. This proves
(2).

Let U1, ..., Us be a finite affine open cover of X. In order to prove (3) it suffices to show
that there are non-empty open sets Vi in Y such that for y ∈ Vi we have dim(f−1(y)∩Ui) ≤
n − m. In fact, then V =

⋂
Vi is non-empty open in Y and if y ∈ Y and Z 6= ∅ is a

component of f−1(y) then Z ∩Ui 6= ∅ for some i so dimZ = dim(Z ∩Ui) ≤ dim(f−1(y)∩
Ui) ≤ n−m. Since dimZ ≥ n−m by (2), we get dimZ = n−m. Thus dim f−1(y) = n−m
for y ∈ V ∩ f(X).

Let then U be an affine open set in X and consider f : U −→ Y = Am. Since f is
dominant, we can consider k[Y ] = k[x1, ..., xm] as a subring of k[U ]. We have k[U ] =
k[v1, ..., vt] for some regular functions vi on U . Since the transcendence degree of k(U)
over k(Y ) is n−m, for any subset T = {w1, ..., wn−m+1} of size n−m+1 of {v1, .., vt} there
is a non-zero polynomials PT ∈ k[Y ][T1, ..., Tn−m+1] such that P[T ](w1, ..., wn−m+1) = 0.
Let RT = RT (x1, ..., xm) ∈ k[Y ] be a non-zero coefficient of PT . The set VU = {y ∈ Y :
RT (y) 6= 0 for all subsets T} is an open dense subset of Y . Let y ∈ VU . Any component
Z of the fiber f−1(y) is a closed irreducible subset of U (if the fiber is empty, then there
is nothing to prove). We have k[Z] = k[v1, ...., vt], where vi is the restriction of vi to Z.
Note that the restriction of PT to Z is a non-zero polynomial P T in k[T1, ..., Tn−m+1].
Clearly, P T (w1, ..., wn−m+1) = 0. It follows that any n − m + 1 elements of of the set
{v1, ...., vt} are algebraically dependent over k. Thus the transcendence degree of k(Z)/k
is < n−m+1, i.e. dimZ ≤ n−m. This shows that dim(f−1(y)∩U) ≤ n−m for y ∈ VU .
This completes our proof of (3). 2

Definition 1. For an algebraic variety X and a point x ∈ X define dimxX as the maxi-
mum of the dimensions of all components of X which contain x.
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Theorem 5. Let f : X −→ Y be a morphism of algebraic varieties. For each k the set
Xk = {x ∈ X : dimx f

−1(f(x)) ≥ k} is closed.

Proof: Our proof is by induction on dimX. If dimX = 0 then the result is clear.
Suppose the result holds for varieties of dimension < n and consider X of dimension n.
First note that it suffices to show the theorem for irreducible X. In fact, since every
component of the fiber f−1(f(x)) is contained in a component of X, Xk is the union of
the sets Zk for all irreducible components Z of X. Also, we may assume that f is dominant
(replacing Y by the closure of f(X)). Let d = dimX − dimY . If k ≤ d then Xk = X by
(2) of Theorem 4. Suppose that k > d. By (3) of Theorem 4, there is a non-empty open
set U in Y such that dim f−1(y) ≤ d for y ∈ U . It follows that f−1(U) ∩ Yk = ∅. Since f
is dominant, f−1(U) is a non-empty open set so the complement Z of f−1(U) is a proper
closed set in X containing Xk. Thus Since X is irreducible, we have dimZ < n. Apply
now the inductive assumption to the morphism f : Z −→ Y and note that Zk = Xk to
get that Xk is closed in Z, hence in X. 2

Corollary 4. Suppose that f : X −→ Y is closed. Then for each k the set Yk = {y ∈ Y :
dim f−1(y) ≥ k} is closed.

Proof: Note that Yk = f(Xk). Since Xk is closed by Theorem 5 and f is a closed map,
Yk is closed. 2

Remark. Note that if X is a projective variety, then any f is closed.

Let us remark that (3) of Theorem 4 can be strengthened: there is an open set V such that
the fibers f−1(y) have dimension n −m (i.e. are non-empty) for all y ∈ V . This follows
from a fact that the image of a dominant morphism contains a non-empty open set. This
can be proved from what we know about finite morphisms (as is done in Schafarevich),
but we prove here a stronger result, which relies on Noether normalization over non-
algebraically closed fields (which we did not prove). It is a nice illustration why results
over non-algebraically closed fields are needed even in algebraic geometry over algebraically
closed fields.

Recall the version of Noether normalization we need:

Noether Normalization: Let k be a field and let R be a finitely generated k-algebra.
Then R contains a subring k[x1, ..., xd] with x1, ..., xd algebraically independent over k and
such that R is a finitely generated k[x1, ..., xd]-module.

Theorem 6. Let f : X −→ Y be a dominant morphism of affine varieties with Y ir-
reducible. There is a non-empty open subset V in Y and a finite surjective morphism
g : f−1(V ) −→ V ×Ad, d = dimX − dimY , such that f = πg, where π : V ×Ad −→ V is
the projection.

Proof: Since f is dominant, we can consider k[Y ] as a subring of k[X]. Let F = k(Y )
and let R be the the ring obtained from k[X] by inverting all non-zero elements of k[Y ].
Then R is a finitely generated F -algebra. Note that we have a natural homomorphism
η : k[X] −→ R (which does not have to be injective, but is injective on k[Y]) and every
element of R is of the form η(r)/η(g), where r ∈ k[X] and g ∈ k[Y ]. If η(r) = 0 the there
is a non-zero a ∈ k[Y ] such that ar = 0 (we are using here basic facts about localization).
Since R is Noetherian, the kernel of η is finitely generated and there is a non-zero a ∈ k[Y ]
such that η(r) = 0 iff ar = 0.
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By Noether normalization, there are elements z1, ..., zd ∈ R, algebraically independent
over F such that R is a finitely generated F [z1, ..., zd]-module. We mays assume that
zi = η(xi) for xi ∈ k[X]. Recall now that k[X] = k[v1, ..., vt] for some functions vi. For
each i there is a monic polynomial Pi(T ) ∈ F [z1, ..., zd][T ] such that Pi(η(vi)) = 0. The
coefficients of the polynomials Pi involve a finite number of elements of F . Thus we may
consider these polynomials as members of k[Y ][1/h][x1, ..., xd][T ] for some h ∈ k[Y ] which
can be assumed divisible by a. Then Pi(vi) = 0 in k[X][1/h]. This shows that k[X][1/h] is
a finitely generated k[Y ][1/h][x1, ..., xd]-module. Now if V = D(h) = {y ∈ Y : h(y) 6= 0}
then k[V ] = k[Y ][1/h], k[f−1(V )] = k[X][1/h], k[Y ][1/h][x1, ..., xd] = k[V × Ad] and the
natural homomorphisms

k[V ] −→ k[V × Ad] −→ k[f−1(V )]

correspond to morphisms of varieties as claimed in the theorem. 2.

Exercise: Derive Theorem 4 and the fact that image of a dominant morphism contains
a non-empty open set from Theorem 6.


