Theorem 1. Let X be an affine irreducible variety of dimension d, f € k[X] a non-zero
function and Xy ={x € X : f(x) =0}. Then either Xy =0 or dim Xy =d — 1.

Proof: Let ¢ : X — A? be a finite surjective morphism. The morphism
¥ X — AT x A =AM Y(2) = (¢(), f(2))

is finite. Indeed, if 7 : A% x A — A? is the projection, then ¢ = 11, so the claim follows
from the following simple exercise:

Exercise: If g: X — Y and h : Y — Z are morphisms of affine varieties and hg is
finite then g is finite.

Thus the image ¢(X) is an irreducible closed subset of A%T! of dimension d. It follows that
P(X) =V(h) ={z € AT+ h(z) = 0} for some irreducible polynomial h(z1,...,Tqs1) =
Zfzo a;(x1, ...,:L’d)ﬂjfi_H. Note that ag # 0 (otherwise h = X411 and ¥(X) C Ad x {0}, ..
f =0, which is false).

Exercise: Use the fact that f is integral over k[A?] to show that as is constant.

Note that if w € Xy then ¢(w) = (x1,...,2q), Y(w) = (21,...,24,0) an h(¢p(w)) = 0. Thus
ap(zy,...,zq) = 0. Conversely, suppose that ag(z1,...,24) = 0. Then h(x1,...,24,0) = 0 so
(x1,...,24,0) € P(X), i.e there is w € X such that (¢(z), f(z)) = (z1,...,24,0). We see
that w € Xy and ¢(w) = (21,...,74). This shows that ¢(Xy) = {z € A? : ap(z) = 0}
It follows that if X ¢ # () then ¢(Xy) is not empty and therefore is has dimension d — 1
(being defined by a single equation in A?). Since ¢ : X; — ¢(X;) is finite surjective,
dmX;=d-1. O

Exercise: Show that if = (z1,...z4) € A? and ¢ € k is such that h(xy,...,z4,t) = 0 then
there is w € X such that ¢(w) = z and f(w) = t.

Exercise: Use Theorem 1 to show that if X C P" is closed of dimension d and F €&
k[xo, ..., x5 is a homogeneous polynomial (of positive degree) which is not identically 0 on
any component of X then dim Xp = d—1, where Xp = {z € X : F(x) = 0} (in particular,
X is non-empty if d > 0).

Theorem 2. Let X be an irreducible algebraic variety of dimension d and let f € O x(X)
be a reqular function on X. Then any (non-empty) component of Xy = {x € X : f(z) =0}
has dimension d — 1.

Proof: Let Z be an irreducible component of X; (assuming Xy is non-empty). Let U
be an affine open subset of X such that U N Z is not empty. Thus Y = UN Z is an
irreducible component of UN Xy = Uy and dimY = dim Z, dimU = dim X. Let V' be the
union of all irreducible components of Us except Y. There is a regular function h € k[U]
such that h vanishes on V' but not on Y. The set D(h) = {z € U : h(z) # 0} is an affine
open set in U (hence in X) such that D(h); = D(h) N X; = D(h)NY is not empty. Thus
dim D(h) = dim X = d and dimD(h); = dimY = dim Z (since it is a non-empty open
subset of Z). By Theorem 1, dim D(h)s = dimD(h) —1,ie. dimZ =d—-1. O
Corollary 1. If X C P" is closed irreducible of dimension d and F € k[zq,...,z,] is a
homogeneous polynomial (of positive degree) which is not identically 0 on X then every
component of Xp = {x € X : F(x) = 0} has dimension d — 1.
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Proof: Let Z be a component of X and let [z, ..., z,| be a point of Z. Pick i such that
z; # 0 and let U be the affine open subset of X given by x; # 0. Then U is irreducible
and Z NU is a non-empty component of Uy, where f = F /x?egF is a non-zero function
on U. Thus dim(Z NU) = dimU — 1 by Theorem 2. Since dim(Z NU) = dim Z and

dim U = dim X, the result follows. O

Corollary 2. If X is an irreducible variety of dimension d and let fi,...,fr € Ox(X
be regular functions on X. Then any (non-empty) component of Y = {x € X : f1(z) =

fo(z) = ... = fr(x) = 0} has dimension > d — k.
Proof: Note that a component of Y is a component of Zy, for some component Z of
{r e X : fi(z) = fa(x) = ... = fr_1(z) = 0} and use induction. O

Corollary 3. If X C P" is locally closed irreducible of dimension d and F1y,...,F}, €
klxg, ..., 2] are homogeneous polynomials (of positive degree) then every (non-empty) com-
ponent of Y = {zx € X : Fi(z) = ... = Fy(z) = 0} has dimension > d — k.

Proof: Exercise. Use Corollary 2 and the ideas from proof of Corollary 1. O

Theorem 3. Let X,Y be locally closed irreducible subvarieties of PN of dimensions m,
n respectively. Then every (non-empty) irreducible component of X N'Y has dimension
>n+m—N. If X, Y are closed and n+m > N then X NY # .

Proof: Let Z be a component of X NY and let z € Z. Let U be an affine open subset
of PV containing z and isomorphic to AY. Then U N Z is a non-empty component of
UNnX)N(UNY). Since the dimensions of U,U N X, U NY,U N Z coincide with the
dimensions of PV, X, Y, Z respectively, we may assume that X, Y are inside AY. Note
that X NY is isomorphic to (X x Y) N A, where A is the diagonal in AN x AN, If
Z1, ., TN, Y1, ..., yn are coordinates on AN x AN then A is given by zeros of N regular
functions x; — y;, i = 1,2,..., N. By Corollary 2, each component of (X x Y) N A has
dimension > n 4+ m — N. This proves the first part of the theorem.

In order to show the second part, consider the cones C'x, Cy of X and Y in AN, These
are closed irreducible subset of dimension m + 1, n 4 1 respectively and both contain the
point (0,0,...,0). By the first part of the theorem, any component of C'x N Cy which
contains (0,0, ...,0) has dimension > (m+ 1)+ (n+1) - (N+1)=m+n+1—-N > 0.
Thus there is a non-zero point in this component and its image in P¥ is a point of X NY.
O

Remark. One may be tempted to replace PV in Theorem 3 by an irreducible variety W
of dimension N. But the results does not hold in such a generality. Consider the quadric
W in P? given by X2 + X? + X3 + X2 = 0. This is an irreducible subset of dimension
2. Consider the morphisms F, : P! — W given by F.([to,t1]) = [to, eito, t1, €it1], where
e = +1 and i = —1. The images of F_1, F; are closed irreducible curves on W with empty
intersection. This disproves the second part of the theorem. Passing to cones in A% gives
a counterexample to the first part. Note that W is birational to P? but our consideration
shows that it is not isomorphic to P2.

In the proof of Theorem 3 we used the following two simple, but useful facts.

Exercise. Let X, Y be varieties of dimension m,n respectively. Then the dimension
of X xY is m +n. Hint. Reduce to the case of affine varieties and then find a finite
surjective map onto A™*" (for a different proof consult the book).
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Exercise. Let X C PV be closed subset of dimension d and let Cx be the (closed)
cone of X in AV. Show that dimCx = d + 1. Hint. Reduce to irreducible X, so Cx
is irreducible. By the discussion below there is a chain X;, ¢ = 0,1,..., N of irreducible
closed subsets of PV such that dimX; = i and X4 = X. Set Zy = {(0,0,...0)} and
Z;iy1 = Cx,. Then Z; form a chain of irreducible, closed subsets of ANTL of length N + 1.
Since dim ANt = N + 1, we see that dimZ; = i. Since Z4,1 = Cx, the result follows.

We have seen that dim X is equal to the largest n such that X has a chain Xg C X7 C
... € X,, € X such that each Xj is closed and irreducible. We will show now that if X is
irreducible then every chain of irreducible closed subsets of X can be refined to a chain
of length dim X (i.e. all maximal such chains have length dim X'). For this it suffices to
show the following

Proposition 1. Let X be irreducible and let Y be a proper irreducible closed subset of X.
Then' Y C Z C X for some closed irreducible subset Z of dimension dim X — 1.

Proof: Let U be an affine open subset of X such that V= U NY is not empty. Thus
U is an irreducible affine variety and V is a non-empty proper closed irreducible subset
of V. Thus there is 0 # f € k[U] such that V' C Uy. Since V is irreducible, there is
an irreducible component W of Uy containing V. By Theorem 2, dimW = dimU —1 =
dim X — 1. Let Z be the closure of W in X. Then Z is irreducible, contains Y (since
Visdense in Y), and ZNU = W, so W is a non-empty open subset of Z and therefore
dimZ =dimW =dimX —1. O

In the case when X is affine our obeservation translates into the following algebraic
statement:

If R is a domain finitely generated over an algebraically closed field k then all mazimal
chains of prime ideals in R have the same length equal to the Krull dimension of R.

Not every Noetherian ring has the above property and Noetherian rings having the prop-
erty are called catenary. Practically all Noetherian rings one encounters in algebraic
geometry are catenary though. The translation of Theorem 2 for affine X to a statement
about finitely generated k—algebras holds for all catenary rings (Exercise: formulate this
result), and the following slightly weaker version, usually called Krull’s Hauptidealsatz
or Principal Ideal Theorem, holds for all Noetherian rings and it is a cornerstone of the
theory of Krull dimension

Principal Ideal Theorem: Let R be a Noetherian domain and 0 # f € R a non-unit.
Then every prime ideal of R which is minimal among all prime ideals containing f is also
minimal among all non-trivial prime ideals of R.

Exercise: Derive this result for R = k[X] from Theorem 2.
All the results we proved about dimension of algebraic varieties were derived from the
Noether normalization theorem. Let us formulate here a strong version of this result

Strong Noether Normalization: Let k be a field and let R be a finitely generated
k-algebra of dimension d. Suppose that Iy C Iy C ... C I, is a chain of ideals of R
such that the sequence d; = dim(R/1;) is strictly decreasing. Then R contains a subring
klx1,...,xq] with x1,...,xq algebraically independent over k and such that R is a finitely
generated k[x1, ..., vq]-module and the ideal I; Nk[x1, .., 24] is generated by 24,41, ..., 24 for
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j=12..m. If R is graded (i.e. it is the graded ring of a projective veriety) and the
ideals I are homogeneous then the x; can be chosen homogeneous.

We leave it as a challenging exercise to prove this result and to formulate it in the langauge
of affine/projective varieties when k is algebraically closed.

Theorem 4. Let f : X — Y be a dominant morphism of irreducible algebraic varieties.
Then
(1) n=dimX >m =dimY;
(2) every non-empty component of f~1(y) has dimension > n —m for every y € Y;
(3) there is an open dense set V. CY such that dim f~(y) < n —m (i.e. either f=!
is empty or dim f~1(y) =n —m) for every y € V;

Proof: 1t suffices to show the theorem in the case when Y is affine (all statements are
local, i.e. if they hold for each member of an open cover of Y then they hold for Y). If U
is a non-empty affine open set in X then U is dense in X and f(U) is dense in Y i.e. the
morphism f: U — Y is dominant. In other words, k[Y] embeds into k[U] and therefore
k(YY) is a subfield of k(U) = k(X). It follows that n > m. This proves (1).

Let g be a finite surjective morphism g : Y — A" and h = gf. For a point y € Y and
g(y) = a = (a1, ..., an,) the fiber h=!(a) is the union of fibers of f over the finite set g~!(a).
Thus every component of f~1(y) is a component of h~!(a). Thus it suffices to show (2)
and (3) for h. In other words, we may assume that Y = A™. Now if z1,...,x,, are the
coordinate functions on A™, then {a} is given by zeros of the m functions f; = z; — a;,
i = 1,2,...,m. Thus h~!(a) is the set of zeros of the regular on X functions f;h. By
Corollary 2, every non-empty component of h~!(a) has dimension > n — m. This proves
(2).

Let Uy, ...,Us be a finite affine open cover of X. In order to prove (3) it suffices to show
that there are non-empty open sets V; in Y such that for y € V; we have dim(f 1 (y)NU;) <
n —m. In fact, then V' = (V; is non-empty open in Y and if y € Y and Z # () is a
component of f~1(y) then Z NU; # ) for some i so dim Z = dim(Z NU;) < dim(f~(y) N
U;) < n—m. Since dim Z > n—m by (2), we get dim Z = n—m. Thus dim f ~!(y) = n—m
fory e V.n f(X).

Let then U be an affine open set in X and consider f : U — Y = A™. Since f is
dominant, we can consider k[Y]| = k[x1,...,2y] as a subring of k[U]. We have k[U] =
klvi,...,v for some regular functions v; on U. Since the transcendence degree of k(U)
over k(Y') is n—m, for any subset T' = {w1, ..., wp—m+1} of size n—m—+1 of {vq, .., v¢ } there
is a non-zero polynomials Pr € k[Y][T1, ..., Ty,—m+1] such that PT](w1, ..., ws—ms1) = 0.
Let Ry = Ry (z1,...,xm) € k[Y] be a non-zero coefficient of Pr. The set Viy = {y € Y :
Rp(y) # 0 for all subsets T'} is an open dense subset of Y. Let y € Viy. Any component
Z of the fiber f~1(y) is a closed irreducible subset of U (if the fiber is empty, then there
is nothing to prove). We have k[Z] = k[vy, ....,T¢], where T; is the restriction of v; to Z.
Note that the restriction of Pr to Z is a non-zero polynomial Pr in E[Ty, ... Th—mi1)-
Clearly, Pr(wWy,...,Wn_my1) = 0. It follows that any n — m + 1 elements of of the set
{71, ....,U;} are algebraically dependent over k. Thus the transcendence degree of k(Z)/k
is <nm—m+1,ie dimZ < n—m. This shows that dim(f~(y)NU) <n—m fory € Vy.
This completes our proof of (3). O

Definition 1. For an algebraic variety X and a point x € X define dim, X as the maxi-
mum of the dimensions of all components of X which contain x.
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Theorem 5. Let f : X — Y be a morphism of algebraic varieties. For each k the set
X, = {z € X : dim, f~1(f(z)) > k} is closed.

Proof: Our proof is by induction on dim X. If dim X = 0 then the result is clear.
Suppose the result holds for varieties of dimension < n and consider X of dimension n.
First note that it suffices to show the theorem for irreducible X. In fact, since every
component of the fiber f~!(f(x)) is contained in a component of X, X is the union of
the sets Zj, for all irreducible components Z of X. Also, we may assume that f is dominant
(replacing Y by the closure of f(X)). Let d =dim X —dimY. If £ <d then X} = X by
(2) of Theorem 4. Suppose that k > d. By (3) of Theorem 4, there is a non-empty open
set U in Y such that dim f~!(y) < d for y € U. It follows that f~%(U) N Y, = 0. Since f
is dominant, f~!(U) is a non-empty open set so the complement Z of f~!(U) is a proper
closed set in X containing X;. Thus Since X is irreducible, we have dim Z < n. Apply
now the inductive assumption to the morphism f : Z — Y and note that Z; = X} to
get that X} is closed in Z, hence in X. O

Corollary 4. Suppose that f: X — Y is closed. Then for each k the set Yy ={y €Y :
dim f~1(y) > k} is closed.

Proof: Note that Y, = f(X}). Since X is closed by Theorem 5 and f is a closed map,
Y} is closed. O

Remark. Note that if X is a projective variety, then any f is closed.

Let us remark that (3) of Theorem 4 can be strengthened: there is an open set V' such that
the fibers f~!(y) have dimension n — m (i.e. are non-empty) for all y € V. This follows
from a fact that the image of a dominant morphism contains a non-empty open set. This
can be proved from what we know about finite morphisms (as is done in Schafarevich),
but we prove here a stronger result, which relies on Noether normalization over non-
algebraically closed fields (which we did not prove). It is a nice illustration why results
over non-algebraically closed fields are needed even in algebraic geometry over algebraically
closed fields.
Recall the version of Noether normalization we need:

Noether Normalization: Let k be a field and let R be a finitely generated k-algebra.
Then R contains a subring k[z1, ..., xq] with x1,...,x4 algebraically independent over k and
such that R is a finitely generated k[, ..., xq]-module.

Theorem 6. Let f : X — Y be a dominant morphism of affine varieties with Y ir-
reducible. There is a non-empty open subset V in Y and a finite surjective morphism
g: fTUV) — V xA?, d=dim X —dimY’, such that f = g, where w:V x A1 — V is
the projection.

Proof: Since f is dominant, we can consider k[Y] as a subring of k[X]. Let F = k(Y)
and let R be the the ring obtained from k[X] by inverting all non-zero elements of k[Y].
Then R is a finitely generated F-algebra. Note that we have a natural homomorphism
n : k[X] — R (which does not have to be injective, but is injective on k[Y]) and every
element of R is of the form 7n(r)/n(g), where r € k[X] and g € k[Y]. If n(r) = 0 the there
is a non-zero a € k[Y] such that ar = 0 (we are using here basic facts about localization).
Since R is Noetherian, the kernel of 7 is finitely generated and there is a non-zero a € k[Y]
such that n(r) =0 iff ar = 0.



By Noether normalization, there are elements z1, ...,z € R, algebraically independent
over F' such that R is a finitely generated F[z1,...,2z4]-module. We mays assume that
zi = n(x;) for x; € k[X]. Recall now that k[X] = k[v1, ..., v¢] for some functions v;. For
each i there is a monic polynomial P;(T") € F[z1, ..., zq][T] such that P;(n(v;)) = 0. The
coefficients of the polynomials P; involve a finite number of elements of F'. Thus we may
consider these polynomials as members of k[Y|[1/h][z1, ..., z4][T] for some h € k[Y] which
can be assumed divisible by a. Then P;(v;) = 0 in k[X][1/h]. This shows that k[X][1/h] is
a finitely generated k[Y][1/h][z1,...,x4]-module. Now if V' = D(h) = {y € Y : h(y) # 0}
then k[V] = E[Y][1/h], k[f~*(V)] = E[X][1/h], k[Y][1/R][z1,...,24) = k[V x A?] and the
natural homomorphisms

E[V] — K[V x AY — k[f 1 (V)]

correspond to morphisms of varieties as claimed in the theorem. 0O.

Exercise: Derive Theorem 4 and the fact that image of a dominant morphism contains
a non-empty open set from Theorem 6.



