
Polynomials over UFD’s

Let R be a UFD and let K be the field of fractions of R. Our goal is to compare

arithmetic in the rings R[x] and K[x]. We introduce the following notion.

Definition 1. A non-constant polynomial p ∈ R[x] is called primitive if any

common divisor of all the coefficients of p is invertible in R. Equivalently, p =

p0 + p1x + ... + pnx
n is primitive iff gcd(p0, p1, ..., pn) = 1.

Example: The polynomial 6x5 − 12x3 + 5x is primitive in Z[x], but the poly-

nomial 6x5 − 12x3 + 4x is not primitive.

The following simple observation will be very useful.

Lemma 1. Let f ∈ K[x] be a non-constant polynomial. There exists k ∈ K, k 6= 0

such kf ∈ R[x] is primitive.

Proof: Let f = f0 + f1x + ... + fnx
n. There exists a ∈ R, a 6= 0 such that

af ∈ R[x] (if fi = bi/ai, where ai, bi ∈ R, then a = a0a1...an works). Let d =

gcd(af0, af1, ..., afn). Then gcd(af0/d, af1/d, ..., afn/d) = 1. In other words, af/d

is primitive, i.e. k = a/d works. 2

The key observation is the following result.

Theorem 1. Let π ∈ R be an irreducible element. Then π is a prime element in

the ring R[x].

Proof: Since R is a UFD, π is a prime element of R. In order to prove that π is

prime in R[x] we need to prove that πR[x] is a prime ideal. Note that a polynomial

h ∈ R[x] belongs to πR[x] iff every coefficient of h is divisible by π.

Consider the canonical homomorphism φ : R −→ R/πR. As we know, it extends

to the homomorphism φ : R[x] −→ (R/πR)[x] defined by φ(f0 + f1x + ... + fnx
n) =

φ(f0) + φ(f1)x + ... + φ(fn)xn. By the very definition of φ, a polynomial f is in the

kernel of φ iff φ(f0) = ... = φ(fn) = 0, i.e. iff all coefficients of f are divisible by π.

Thus ker φ = πR[x]. Since πR is a prime ideal of R, the ring R/πR is an integral

domain and therefore so is the ring (R/πR)[x]. Thus the kernel of φ is a prime ideal.

In other words, πR[x] is a prime ideal of R[x], so π is a prime element in R[x]. 2
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As a corollary we get the following important result.

Gauss Lemma. Let f, g ∈ R[x] be primitive polynomials. Then fg is also primi-

tive.

Proof: Suppose that fg is not primitive. Thus there is a non-invertible a ∈ R which

divides all coefficients of fg. Let π be an irreducible divisor of a. Then π|fg. By

Theorem 1, π is a prime element of R[x], so π|f or π|g. Neither case is possible

since both f and g are primitive. The contradiction shows that fg is primitive. 2

As a corollary we get the following fundamental result:

Theorem 2. Let f, g ∈ R[x]. Suppose that f is primitive and g = fh for some

h ∈ K[x]. Then h ∈ R[x]. In other words, if f |g in K[x] then f |g in R[x].

Proof: Let k ∈ K, k 6= 0 be such that kh ∈ R[x] is primitive. Since kg = f · (kh),

we get by Gauss’ Lemma that kg ∈ R[x] is primitive. Let g = g0 + g1x + ... + gmxm

so kgi ∈ R for i = 0, ...,m. We may write k = a/b for some a, b ∈ R such that

gcd(a, b) = 1. We see that b|agi for i = 0, 1, ...,m. Since gcd(a, b) = 1, we conclude

that b|gi for i = 0, 1, ...,m. But then kgi = a(gi/b) is divisible by a for i = 0, 1, ...,m.

On the other hand , kg is primitive so a must be invertible in R. It follows that

h = ba−1(kh) ∈ R[x]. 2

Corollary 1. Let g = g0 + g1x + ... + gmxm ∈ R[x]. Suppoce that a, b ∈ R are

relatively prime and g(a/b) = 0 (i.e. a/b is a root of g in K). Then a|g0 and b|gm.

Proof: Let f(x) = bx − a. Then f ∈ R[x] is primitive, since a, b are relatively

prime. Since g(a/b) = 0, we have f(x)|g(x) in K[x]. By Theorem 2, g(x) = h(x)f(x)

for some h = h0 + h1x + ... + gm−1x
m−1 ∈ R[x]. It follows that g0 = −h0a and

gm = hm−1b, so b|gm and a|g0. 2

In particular, if R = Z then we get a very efficient way to check if a given polynomial

with integer coefficients has a rational root.

Another useful corollary is the following result.

Proposition 1. Let f ∈ R[x] be monic. Suppose that g, h ∈ K[x] are monic and

f = gh. Then f, g ∈ R[x].
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Proof: Let k, t ∈ K be non-zero elements such that kg, th are primitive. Since g, h

are monic, both k and t are in R. By Gauss Lemma, the polynomial (kg)(th) = (kt)f

is primitive so kt, being a divisor of all coefficients of (kt)f , is a unit in R. Thus

both k and t are invertible in R and therefore both g and h are in R[x]. 2

Remark. Proposition 1 is true for any R which is integrally closed, but the proof

is a bit more involved.

We are able now to compare irreducible elements in R[x] and K[x].

Theorem 3. An element f ∈ R[x] is irreducible iff either f is an irreducible (in R)

constant or f is primitive and irreducible in K[x].

Proof: Suppose first that f is irreducible in R[x]. If f is a constant, then clearly

it must be irreducible in R (R and R[x] have the same invertible elements). Suppose

deg f > 0. Then f is primitive since it is irreducible (recall that primitive simply

means that f does not have any constant divisors which are not invertible). If f = gh

in K[x], let k ∈ K be such that kg ∈ R[x] is primitive. We have f = (kg)(k−1h).

Since kg is primitive, we have k−1h ∈ R[x] by Theorem 2. Thus we factored f as

a product (kg)(k−1h) of two elements in R[x]. Since f is irreducible in R[x], one

of these two factors is constant. It follows that either g or h is constant so f is

irreducible in K[x].

Conversely suppose that either f is an irreducible in R constant or f is primitive

and irreducible in K[x]. In the latter case f is irreducible in R[x] by Theorem 1. In

the former case, if f = gh for some g, h ∈ R[x] then one of g, h is constant since f

is irreducible in K[x]. We may assume that g is constant. But then g divides all

the coefficients of gh = f . Since f is primitive, g must be invertible constant in R.

This shows that either g or h is invertible in R[x], so f is irreducible in R[x]. 2

We prove now the following very important result.

Theorem 4. Let R be a UFD. Then R[x] is also a UFD.

Proof: Let K be the field of fractions of R. Note that, by Lemma 1, every

polynomial in K[x] is associated with a primitive polynomial in R[x]. Since K[x]

is a UFD, every non-zero, non constant polynomial f in K[x] can be factored as
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kp1...pm, where k ∈ K and p1, ..., pm ∈ R[x] are primitive and irreducible in K[x].

By Theorem 3, each pi is irreducible in R[x]. Suppose now that f ∈ R[x]. Since

p1...pm is primitive by Gauss’ Lemma, the constant k belongs to R by Theorem 2.

Thus k factors as a product of elements irreducible in R (since R is a UFD), which

remain irreducible in R[x] by Theorem 1. This shows that f factors in R[x] into a

product of irreducible elements. That any two such factorizations are equivalent is

a rather easy consequence of unique factorization in K[x]. Alternatively, it suffices

now to show that every irreducible element p ∈ R[x] is prime. If p is constant, this

follows from Theorem 1. If it is not constant, p is primitive and irreducible in K[x],

hence prime in K[x]. Suppose that p|fg for some f, g ∈ R[x]. Then in K[x], either

p|f or p|g. By Theorem 2, this means that p|f are p|g in R[x], so p is indeed a prime

element in R[x]. 2

Application. As an application of the ideas developed above, we will describe

all rational numbers q such that cos(qπ) is rational. Since cos has period 2π and

satisfies cos(2π − x) = cos x, it suffices to describe such q in the interval [0, 1].

Let q = m/n. Consider the complex number z = cos(qπ) + i sin(qπ). By De

Moivre’s Theorem, z2n = cos(2mπ) + i sin(2mπ) = 1. Similarly, z2n = 1, where

z = cos(qπ)− i sin(qπ). In other words, z and z are roots of the polynomial x2n − 1.

It follows that the polynomial f(x) = (x−z)(x−z) = x2−2 cos(qπ)+1 divides x2n−1

in C[x]. By our assumption, f ∈ Q[x]. We want to show that f |x2n − 1 in Q[x]. By

division algorithm, x2n−1 = gf +r for some g, r ∈ Q[x] and deg r ≤ 1 It follows that

in C[z] we have f |r which is possible only if r = 0. Thus x2n − 1 = gf and g ∈ Q[x].

Let 0 < k ∈ Q be such that kf ∈ Z[x] is primitive. Then by Theorem 2, k−1g ∈ Z[x].

Since x2n−1 is monic, both kf and k−1g must be monic. But the leading coefficient

of kf is k, so k = 1. This proves that f ∈ Z[x]. We proved that if cos(qπ) is

rational then 2 cos(qπ) is an integer. It follows that 2 cos(qπ) ∈ {−2,−1, 0, 1, 2},

i.e. cos(qπ) ∈ {−1,−1/2, 0, 1/2, 1}. This corresponds to qπ ∈ {π, 2π/3, π/2, π/3, 0}

(recall that we have assumed q ∈ [0, 1]), i.e. q ∈ {1, 2/3, 1/2, 1/3, 0}. We see that

cos(qπ) is a rational number iff q = 2m±r, where m ∈ Z and r ∈ {1, 2/3, 1/2, 1/3, 0}.

Final remark: We proved above that if R is a UFD then so is R[x]. In particular,

Z[x] is a UFD. We have seen some time ago that Z[x] is not a PID (for example, the
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ideal < 2, x > in Z[x] is not principal - prove it). The class of UFD’s is therefore

larger than the class of PID’s. In fact it is substantially larger. There is a a notion

of dimension for rings, analogous to the notion of dimension for topological spaces.

In this theory fields have dimension 0 and PID’s have dimension 1 (but not all one-

dimensional rings are PID’s). On the other hand, there are UFD’s of arbitrary large

dimension. In fact, a polynomial ring in n variables over a field has dimension n and

is a UFD by Theorem 4. One should think of UFD’s as very regular objects among

all the rings, as smooth manifolds are among topological spaces. But there is a

wealth of important rings which are not UFD’s and it is the subject of commutative

algebra and algebraic geometry to investigate these rings. And beyond the world of

commutative ring there is a vast universe (or universes) of non-commutative rings

about which our knowledge is not as extensive, but huge progress has been made in

recent years in conquering important classes of non-commutative rings.
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