
THE ORDER MODULO m

Let m be a positive integer.

Lemma 0.1. For any integer a such that (a, m) = 1 there exists k > such that 0 < k < m

and ak ≡ 1 (mod m) .

Proof. Consider the numbers a, a2, . . . , am. Since there are only m − 1 possible non-zero
remainders upon division by m, two of these m numbers must give the same remainder,
i.e. for some 1 ≤ s < t ≤ m we must have at ≡ as (mod m) . Since (as, m) = 1, we can
divide the last congruence by as and get at−s ≡ 1 (mod m) . Thus k = t − s works. ¤

Remark 0.2. The existence of such k follows immediately from Euler’s Theorem, but the
proof above is simpler than a proof of Euler’s Theorem.

Lemma 0.1 allows us to make the following definition. For any integer a such that
(a, m) = 1 we define the order of a modulo m as the smallest positive integer k such
that ak ≡ 1 (mod m) . We denote it by ordma. Thus

aordma ≡ 1 (mod m)

and
at 6≡ 1 (mod m)

for any t such that 0 < t < ordma.
The function ordm has the following fundamental properties:

Property 1. The congruence ak ≡ 1 (mod m) holds if and only if ordma|k.

Proof. According to the division algorithm, we can write k = n ·ordma+ r, where 0 ≤ r <

ordma. Thus
ak = (aordma)nar ≡ 1n · ar = ar (mod m) .

It follow that ak ≡ 1 (mod m) if and only if ar ≡ 1 (mod m) . But since r < ordma,
the last congruence holds if and only if r = 0. Thus we showed that ak ≡ 1 (mod m) iff
r = 0, i,e, if and only if ordma|k. ¤

Property 2. If (a, m) = 1 then as ≡ at (mod m) if and only if ordma|(s − t).

Proof. We may assume that t ≤ s. Since (at, m) = 1, the congruence as ≡ at (mod m) is
equivalent to as−t ≡ 1 (mod m) (cancelling at). By Property 1, the last congruence holds
iff ordma|(s − t). ¤

Corollary 0.3. No two of the numbers 1, a, a2, . . . , aordma−1 are congruent to each other

modulo m.

Property 3.

ordman =
ordma

(n, ordma)

for all natural numbers n and any a relatively prime to m.
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Proof. By Property 1, (an)k = ank ≡ 1 (mod m) if and only if ordma|nk. The last
divisibility is equivalent to ordma

(n,ordma)

∣

∣

n
(n,ordma)k. Since the numbers ordma

(n,ordma) and n
(n,ordma)

are relatively prime, the last divisibility is in turn equivalent to ordma
(n,ordma)

∣

∣k. Thus we

proved that (an)k ≡ 1 (mod m) if and only if ordma
(n,ordma)

∣

∣k. This clearly implies that

ordman = ordma
(n,ordma) . ¤

The next property will relate ordm(ab) to ordma and ordmb.

Property 4. Let a, b be integers both relatively prime to m. Then

(i) ordm(ab)
∣

∣

ordma · ordmb

(ordma, ordmb)
.

(ii)
ordma · ordmb

(ordma, ordmb)2
∣

∣ordm(ab).

Proof. To make the notation simpler, set u = ordma,w = ordmb. Note that uw
(u,w) =

u w
(u,w) = w u

(u,w) , so the number uw
(u,w) is divisible by both u and w. It follows by Property 1

that a
uw

(u,w) ≡ 1 (mod m) and a
uw

(u,w) ≡ 1 (mod m) . Multiplying these congruences, we

get (ab)
uw

(u,w) ≡ 1 (mod m) . Thus, by Property 1 again, we have ordm(ab)| uw
(u,w) . This

proves (i).

By Property 1, we have au·ordm(ab) ≡ 1 (mod m) . Multiply both sides by bu·ordm(ab) to

get (ab)u·ordm(ab) ≡ bu·ordm(ab) (mod m) . But (ab)u·ordm(ab) ≡ 1 (mod m) (by Property 1).

Thus bu·ordm(ab) ≡ 1 (mod m) . By Property 1 once again, we have w|u · ordm(ab). This
means that w

(u,w)

∣

∣

u
(u,w) · ordm(ab). Since the numbers w

(u,w) and u
(u,w) are relatively prime,

we conclude that w
(u,w)

∣

∣ordm(ab).

In exactly the same way, changing the roles of a and b, we prove that u
(u,w)

∣

∣ordm(ab).

Thus both w
(u,w) and u

(u,w) divide ordm(ab) and since these numbers are relatively prime,

their product also divides ordm(ab), i.e. uw
(u,w)2

∣

∣ordm(ab). This proves (ii). ¤

Note that the right hand side in (i) is equal to the least common multiple of ordma

and ordmb. Property 4 allows to locate ordab within the numbers ordma·ordmb
(ordma,ordmb)2

and
ordma·ordmb

(ordma,ordmb) . Note that in general one can not say much more. For example, if ord52 = 4 =

ord53 and ord5(2 · 3) = 1. On the other hand, ord5(2 · 2) = 2. When (ordma, ordmb) = 1
however both upper and lower bounds are the same so as a corollary we get the following
property.

Property 5. Let a, b be integers both relatively prime to m. If (ordma, ordmb) = 1 then

ordm(ab) = ordma · ordmb.

Exercise. Write a direct proof of Property 5 simplifying the arguments in the proof of
Property 4.

We can now prove the following very useful result.

Theorem 0.4. Let a be an integer relatively prime to m whose order modulo m is largest

possible. Then ordmb|ordma for every integer b.
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Proof. Let p be a prime. We may write ordma = psu, ordmb = ptw for some non-
negative s, t and some integers u, w not divisible by p. By Property 3, ordmaps

= u and
ordmbw = pt. Since (u, pt) = 1, Property 5 tells us that ordm(aps

bw) = ptu. Since psu

is the largest possible order modulo m, we have ptu ≤ psu, i.e. t ≤ s. This shows that
every prime which contributes to ordmb contributes at lest the same to ordma. Thus
ordmb|ordma. ¤

Definition 0.5. The largest possible exponent of an integer modulo m is denoted by λ(m).
It is often called the smallest universal exponent modulo m, since by Theorem 0.4

it is the smallest exponent k > 0 such that bk ≡ 1 (mod m) holds for every b relatively

prime to m.

Our goal is to compute λ(p) for prime numbers p. Note that the congruence xλ(p) ≡
1 (mod p) is satisfied by every integer not divisible by p, i.e. it has p−1 different solutions
modulo p. We will prove the following important theorem.

Theorem 0.6 (Lagrange). Let p be a prime and let f(x) = a0 + a1x + . . . + anxn be a

polynomial with integral coefficients not all of which are divisible by p. Then the congruence

f(x) ≡ 0 (mod p) has at most n different modulo p solutions.

Proof. We proceed by induction on the degree n. When the degree is 0 then f = a0 is a
constant which is not divisible by p, hence the congruence has no solutions. Suppose that
the result holds for all polynomials of degree less than n (which satisfy the assumptions
of the theorem) and consider a polynomial f(x) = a0 + a1x + . . . + anxn with at least
one coefficient not divisible by p. If the congruence f(x) ≡ 0 (mod p) has no solutions,
the result clearly holds for f . Suppose then that there is a solution u to this congruence.
Recall now the following identity for any positive integer k:

xk − uk = (x − u)(xk−1 + xk−2u + . . . + xuk−2 + uk−1).

It follows that we have

f(x) − f(u) = a1(x − u) + a2(x
2 − u2) + . . . + an(xn − un) = (x − u)h(x)

for some polynomial h(x) with integral coefficients and of degree less than n. If all coef-
ficients of h were divisible by p, the same would hold for f , since p|f(u). Suppose now
that w is another solution to f(x) ≡ 0 (mod p) , which is different from u modulo p.
Then p|f(w) − f(u) = (w − u)h(w). Since p ∤ (w − u), we have p|h(w). In other words,
w is a solution to h(x) ≡ 0 (mod p) . By the inductive assumption, there are at most
n− 1 different modulo p such w’s. Thus f(x) ≡ 0 (mod p) has indeed at most n different
solutions modulo p. The result holds then by induction. ¤

As an immediate corollary we see that the congruence xλ(p) ≡ 1 (mod p) has at most
λ(p) solutions. On the other hand, we know that it has p − 1 solutions, so λ(p) ≥ p − 1.
On the other hand, Lemma 0.1 implies that λ(p) ≤ p − 1 (since λ(p) is the order of some
integer). Thus λ(p) = p − 1. Thus we get the following two important results.

Theorem 0.7 (Fermat’s Little Theorem). Let p be a prime. If a is an integer and p ∤ a

then ap−1 ≡ 1 (mod p) .

Theorem 0.8. Let p be a prime. There exists an integer a such that ordpa = p − 1.

Any integer a as in the last theorem is called a primitive root modulo p.



4 THE ORDER MODULO M

Lagrange’s Theorem (Theorem 0.6) has many important applications. For example,
consider the polynomial F (x) = xp−1 − 1 − (x − 1)(x − 2) . . . (x − (p − 1)). It is easy
to see that the degree of this polynomial is less than p − 1 (xp−1 cancels out). However,
by Fermat’s Little Theorem, every integer prime to p satisfies the congruence F (x) ≡
0 (mod p) , i.e. this congruence has p − 1 different solutions modulo p. By Lagrange’s
Theorem, all coefficients of F must be divisible by p. In particular, the constant term
−1 − (−1)(−2) . . . (−(p − 1)) is divisible by p. Thus we get the following theorem.

Theorem 0.9 (Wilson). For every prime p we have (p − 1)! ≡ −1 (mod p) .

It is easy to see that the converse is also true. More precisely, if n is not a prime then
(n − 1)! ≡ 0 (mod n) .

Exercise. Look at other coefficients of F and derive some congruences.
Suppose now that g is a primitive root modulo a prime p. By Property 2, the numbers

1, g, g2, ..., gp−2 are all distinct modulo p. It follows that Thus these numbers form a com-
plete set each number relatively prime to p is congruent to exactly one of these numbers.

Recall that by Property 3, the order of gk modulo p is
p − 1

(k, p − 1)
. We ask: how many of

these numbers have a given order d? This only makes sense for d|p − 1. Given such d

we want to count all k such that 1 ≤ k < p − 1 and (k, p − 1) = p−1
d

. In other words,

k = p−1
d

k1 and (k1, d) = 1. Moreover 1 ≤ k1 < d. There are exactly φ(d) such k. Thus we
have the following result.

Theorem 0.10. Let p be a prime and let d|p− 1. Among the non-zero residues modulo p

there are exactly φ(d) which have order d modulo p. In particular, there are exactly φ(p−1)
different primitive roots modulo p. They are gk, where 1 ≤ k < p − 1 and (k, p − 1) = 1.

The distribution of primitive roots has been the subject of many investigations. One of
the outstanding open problems about primitive roots is the following Conjecture.

Conjecture 0.11 (Artin). Let a 6= −1 be an ineteger which is not a square. Then there

are infinitely many primes p for which a is a primitive root modulo p.

In fact, this is not known for even a single value of a. On the other hand, it is know
that the conjecture follows from so called Generalized Riemann Hypothesis, which is one
of the most important conjectures in number theory. It is know that there are at most two
prime numbers a for which Artin’s conjecture could fail. Thus, we can prove that Artin’s
conjecture is true for one of the numbers 2,3,5 but we do not know for which.


