
Problem 1. Prove that a ≡ b (mod c) if and only if a and b give the same remainders
upon division by c.

Solution: Let ra, rb be the remainders of a, b upon division by c respectively. Thus
a ≡ ra (mod c) and b ≡ rb (mod c) . It follows that a ≡ b (mod c) iff ra ≡ rb (mod c) ,
i.e. iff c|(ra − rb). Note that 0 ≤ ra, rb < c, so |ra − rb| < c. Thus the only way for
c|(ra − rb) to hold is to have ra = rb.

Problem 2. a) Find the remainder upon division of 285 by 341.

b) Find smallest a > 0 such that 2a ≡ 1 (mod 341) .

Solution: a) Use succesive squarings. We have 85 = 26 + 24 + 22 + 20.

220 ≡ 2 (mod 341) ,

221 ≡ 4 (mod 341) ,

222 ≡ 16 (mod 341) ,

223 ≡ 162 ≡ 256 ≡ −85 (mod 341) ,

224 ≡ (−85)2 ≡ 64 (mod 341) ,

225 ≡ 642 ≡ 4 (mod 341) ,

226 ≡ 42 = 16 (mod 341) ,

Thus

285 = 226 ·224 ·222 ·220 ≡ 16 ·64 ·16 ·2 = 223 ·27 ≡ (−85) ·4 ·25 ≡ (−340) ·25 ≡ 25 (mod 341)

b) Note that from a) we have 28 ≡ −85 (mod 341) . Since 4 · 85 = 340, we have

210 = 28 · 4 ≡ (−85) · 4 = −340 ≡ 1 (mod 341) .

Since 28 < 341 and 29 = 512 6≡ 1 (mod 341) , a = 10 is the smallest positive integer such
that 2a ≡ 1 (mod 341) .

Problem 3. For positive integers a, b define [a, b] = ab/ gcd(a, b).

a) Prove that a/ gcd(a, b) and b/ gcd(a, b) are relatively prime.

b) Prove that if a|c and b|c then [a, b]|c.

c) Conlcude that [a, b] is the smallest positive integer divisible by both a and b (we call it
the least common multiple of a and b).

Solution: a) If d > 0 is a common divisor of a/ gcd(a, b) and b/ gcd(a, b) then d gcd(a, b)
divides both a and b and hence d gcd(a, b) ≤ gcd(a, b). It follows that d ≤ 1, i.e. d = 1.
In other words, a/ gcd(a, b) and b/ gcd(a, b) do not have any positive common divisors
different from 1, i.e. they are relatively prime.
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b) Note that a|c implies that a
gcd(a,b) |

c
gcd(a,b) . Similarly, b

gcd(a,b) |
c

gcd(a,b) . Since by a) the

numbers a/ gcd(a, b) and b/ gcd(a, b) are relatively prime, we conclude that their product
also divides c/ gcd(a, b). In other words ab

gcd(a,b)2
| c
gcd(a,b) . It follows that [a, b] = ab

gcd(a,b) |c.

c) Clearly [a, b] is divisible by both a and b. On the other hand, any positive integer
divisible by both a and b is according to b) also divisible by [a, b], hence it can not be
smaller than [a, b]. It means that [a, b] is the lest common multiple of a and b.

Problem 4. Let Fn = 22n

+ 1, for n = 0, 1, 2, ....

a) Prove that F0 · F1 · F2 · ... · Fn = Fn+1 − 2 for every n.

b) Prove that gcd(Fn, Fm) = 1 for n 6= m.

c) Use b) to prove that the set of primes is infinite.

Solution: a) The easiest proof seems to be by induction on n. Since F0 = 3 = 5 − 2 =
F1 − 2, the result holds for n = 0. Suppose that it holds for some n ≥ 0, i.e.

F0 · F1 · F2 · ... · Fn = Fn+1 − 2 = 22n+1 − 1.

Multiplying both sides by Fn+1 = 22n+1

+ 1 we get

F0 · F1 · F2 · ... · Fn · Fn+1 = (22n+1 − 1)(22n+1

+ 1) = 22n+2 − 1 = Fn+2 − 2.

so the result holds for n + 1. By induction, it holds for every n ≥ 0.

b) Suppose that m < n and d is the greatest common divisor of Fm and Fn. Clearly d
divides F0 · F1 · F2 · ... · Fn−1 (since Fm is one of the factors) and therefore it divides the
difference Fn−F0 ·F1 ·F2 ·...·Fn−1, which is 2 by a). Thus d|2, i.e. d = 1 or d = 2. Hovewer
d = 2 is not possible, since the numbers Fk are all odd. Hence d = 1, i.e. gcd(Fn, Fm) = 1.

c) Each number Fn has at least one prime divisor. Choose any one of them and call it pn.
Since gcd(Fn, Fm) = 1, we have pn 6= pm if n 6= m. Thus p1, p2, . . . is an infinite list of
pairwise different primes.

Problem 5. Let a be a number written (in base 10) as

a = a0 + a1 · 10 + a2 · 102 + ... + an · 10n,

where 0 ≤ ai < 10.

(i) Prove that a ≡ a0 (mod 2) . In particular, 2|a iff 2|a0.

(ii) Prove that a ≡ a0 + 2a1 (mod 4) . In particular, 4|a iff 4|a0 + 2a1.

(iii) Prove that a ≡ a0 + 2a1 + 4a2 (mod 8) . In particular, 8|a iff 8|a0 + 2a1 + 4a2.

(iv) Prove that a ≡ a0 (mod 5) . In particular, 5|a iff 5|a0.

(v) Prove that a ≡ a0 +a1 + . . .+an (mod 9) . In particular, 9|a iff 9| a0 +a1 + . . .+an.
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(vi) Prove that a ≡ a0 +a1 + . . .+an (mod 3) . In particular, 3|a iff 3| a0 +a1 + . . .+an.

(vii) Prove that a ≡ a0−a1+a2−. . . (mod 11) . In particular, 11 | a iff 11| a0−a1+a2−. . ..

Solution: Let a = a0 + a1 · 10 + a2 · 102 + ... + an · 10n.
Since 10k ≡ 0 (mod 2) for k > 0 we see that

a ≡ a0 (mod 2) .

Thus 2|a iff 2|a0.
Similarly, 10k ≡ 0 (mod 5) for k > 0 so

a ≡ a0 (mod 5) .

Thus 5|a iff a0 = 0 or a0 = 5 (recall that the numbers ai are the digits of a, i.e. they all
are in the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}).

Now 10 ≡ 2 (mod 4) and 10k ≡ 0 (mod 4) for k ≥ 2 so

a ≡ a0 + a1 · 10 ≡ a0 + 2a1 (mod 4) .

It follows that 4|a iff 4|a0 + 2a1.
Similarly, we have 10 ≡ 2 (mod 8) , 102 ≡ 4 (mod 8) and 10k ≡ 0 (mod 8) for k ≥ 3.

Thus
a ≡ a0 + a1 · 10 + a2 · 102 ≡ a0 + 2a1 + 4a2 (mod 8) .

In particular, 8|a iff 8|a0 + 2a1 + 4a2.
Note now that 10 ≡ 1 (mod 3) and 10 ≡ 1 (mod 9) . Thus 10k ≡ 1 (mod 3) and

10k ≡ 1 (mod 9) for every k ≥ 0. It follows that

a ≡ a1 + a1 + ... + an (mod 3)

and
a ≡ a1 + a1 + ... + an (mod 9) .

In particular, 3|a iff 3|a1 + a1 + ... + an and 9|a iff 9|a1 + a1 + ... + an.
Since 10 ≡ −1 (mod 11) , we have 10k ≡ 1 (mod 11) for k even and 10k ≡ −1 (mod 11)

for k odd. Consequently,

a ≡ a0 − a1 + a2 − a3 + ... (mod 11) .

Thus 11|a iff 11|a0 − a1 + a2 − a3 + ....

Problem 6. Compute λ, µ ∈ Z such that 89λ + 55µ = 1 and find all solutions x ∈ Z to
89x ≡ 7 (mod 55) .

Solution: We perform Euclidean algorithm to 89 and 55:

89 = 55 + 34,

55 = 34 + 21,
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34 = 21 + 13,

21 = 13 + 8,

13 = 8 + 5,

8 = 5 + 3,

5 = 3 + 2,

3 = 2 + 1,

2 = 2 · 1 + 0.

Thus

1 = 3−2 = 3−(5−3) = 2·3−5 = 2(8−5)−5 = 2·8−3·5 = 2·8−3·(13−8) = 5·8−3·13 =

= 5 · (21 − 13) − 3 · 13 = 5 · 21 − 8 · 13 = 5 · 21 − 8 · (34 − 21) = 13 · 21 − 8 · 34 =

13 · (55 − 34) − 8 · 34 = 13 · 55 − 21 · 34 = 13 · 55 − 21 · (89 − 55) = 34 · 55 − 21 · 89.

Thus λ = −21, µ = 34 work. From 1 = 34 · 55 − 21 · 89 we see that

89 · (−21) ≡ 1 (mod 55) .

Mulyplying this congruence by 7 we get

89 · (−21) · 7 ≡ 7 (mod 55) .

To simplyfy, note that (−21) · 7 = −147 ≡ 18 (mod 55) , so

89 · 18 ≡ 7 (mod 55) .

Since (89, 55) = 1, all solutions are given by x = 18 + k · 55, k ∈ Z.

Problem 7. Solve the system of congruences:

x ≡ 17 (mod 504) , x ≡ −4 (mod 35) , x ≡ 33 (mod 16) .

Solution: We are asked to solve the system

x ≡ 17 (mod 504) , x ≡ −4 (mod 35) , x ≡ 33 (mod 16) .

Since the moduli are not pairwise relatively prime we can not apply Chinese remainder
theorem to this system. Note that 504 = 8 · 9 · 7 and 35 = 5 · 7. Now the congruence
x ≡ 17 (mod 504) is equivalent to the three congruences

x ≡ 17 ≡ 1 (mod 8) , x ≡ 17 ≡ −1 (mod 9) , x ≡ 17 ≡ 3 (mod 7) .

Similarly, the congruence x ≡ −4 (mod 35) is equivalent to the system

x ≡ −4 ≡ 1 (mod 5) , x ≡ 3 (mod 7) .
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Finally the congruence x ≡ 33 (mod 16) is the same as x ≡ 1 (mod 16) . So our original
system is equivalent to the system

x ≡ 1 (mod 16) , x ≡ −1 (mod 9) , x ≡ 3 (mod 7) , x ≡ 1 (mod 5) .

(note that we did not include x ≡ 1 (mod 8) since this congruence is a consequence of
x ≡ 1 (mod 16) ).

Now we may apply Chinese remainder theorem. We calculate that

(−59) · 16 + 3 · (9 · 7 · 5) = 1,

249 · 9 + (−4) · 16 · 7 · 5 = 1,

103 · 7 + (−1) · 16 · 9 · 5 = 1,

(−403) · 5 + 2 · (16 · 9 · 7) = 1.

A solution to our system is therefore given by

x = 3 · (9 · 7 · 5) + (−1) · (−4) · 16 · 7 · 5 + 3 · (−1) · 16 · 9 · 5 + 2 · (16 · 9 · 7) = 3041.

All solotions to this sustem are theorefore given by

x = 3041 + k · 16 · 9 · 7 · 5 = 3041 + k · 5040,

where k ∈ Z.

Problem 8. An old women goes to market and a horse steps on her basket and crushes
her eggs. The rider offers to pay for the damages and asks her how many eggs she had
brought. She does not remember the exact number, but when she had taken them out two
at a time, there was one egg left at the end. The same thing happened when she picked
them out three, four, five, and six at a time, but when she took them out seven at a time,
no egg left at the end. What is the smallest number of eggs she could have had?

Solution: The problem asks us to find smalest positive solution to the system of congru-
ences

x ≡ 1 (mod 2) , x ≡ 1 (mod 3) , x ≡ 1 (mod 4) ,

x ≡ 1 (mod 5) , x ≡ 1 (mod 6) , x ≡ 0 (mod 7) .

The moduli are not pairwise relatively prime here. Note however that the congruences

x ≡ 1 (mod 3) , x ≡ 1 (mod 4) , x ≡ 1 (mod 5) , x ≡ 0 (mod 7)

imply the remaining two congruences. So the latter systm is equivalent to the former. Now
the moduli are pairwise relatively prime and we can apply Chinese remainder theorem.

47 · 3 + (−1) · 4 · 5 · 7 = 1,

(−26) · 4 + 3 · 5 · 7 = 1,

17 · 5 + (−1) · ·3 · 4 · 7 = 1,
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(−17) · 7 + 2 · 3 · 4 · 5 = 1.

A solution to our system is given by

x = (−1) · 4 · 5 · 7 + 3 · 5 · 7 + (−1) · ·3 · 4 · 7 + 0 · 2 · 3 · 4 · 5 = −119.

The smallest positive solution is then −119 + 3 · 4 · 5 · 7 = 301.

Problem 9. a) Prove that any natural number n such that n ≡ 3 (mod 4) has a prime
divisor p such that p ≡ 3 (mod 4) (hint: note that every odd prime number q either
satisfies q ≡ 1 (mod 4) or q ≡ 3 (mod 4) ; what can you say about product of primes of
the first type?)

b) Prove that n! − 1 ≡ 3 (mod 4) for any n > 3.

c) Prove that every prime divisor of n! − 1 is bigger than n.

d) Conclude that there are infinitely many primes q such that q ≡ 3 (mod 4) .

Solution: a) Note that for every odd integer m either m ≡ 1 (mod 4) or m ≡
3 (mod 4) . Also, iff a1, ..., as are integers satisfying ai ≡ 1 (mod 4) for i = 1, 2, ..., s then
by multiplying these congruences we see that a1a2...as ≡ 1 (mod 4) .

Consider now a positive integer n ≡ 3 (mod 4) . Note that n is odd, so all its prime
divisors are odd. We know that n is a product of prime numbers. If each of these prime
numbers were ≡ 1 (mod 4) , then according to our remark above, also their product n
would be ≡ 1 (mod 4) , which is false. Thus n must have a prime divisor p ≡ 3 (mod 4) .

b) If n > 3 then n! = 1 · 2 · 3 · ... · n is divisible by 4. Thus n! ≡ 0 (mod 4) and
n! − 1 ≡ −1 ≡ 3 (mod 4) .

c) If p ≤ n then p divides n! and therefore does not divide n! − 1. It follows that any
divisor of n! − 1 is larger than n.

d) Let n > 3. By a) and b) there is a prime number q ≡ 3 (mod 4) which divides n! − 1
and q > n by c). Thus there are arbitrarily large primes ≡ 3 (mod 4) , so the set of such
primes is infinite.

Problem 10. Prove that every composite number n has a prime divisor not larger than√
n.

Solution: Since n is composite, we may factor n as n = ab, where 1 < a ≤ b. Thus
n = ab ≥ a2 and

√
n ≥ a. Any prime divisor of a is a prime divisor of n and it is ≤ √

n.

Problem 11. The numbers n, n + 2, n + 4 are prime. What is n? Prove your answer.
(Hint: consider these numbers modulo 3).

Solution: Note that one of the congruences n ≡ 0 (mod 3) , n ≡ 1 (mod 3) , n ≡
2 (mod 3) holds. If n ≡ 0 (mod 3) then 3|n. Since n is a prime, we must have n = 3 and
then indeed n + 2 = 5, n + 4 = 7 are primes.

If n ≡ 1 (mod 3) then n + 2 ≡ 3 ≡ 0 (mod 3) , i.e. 3|n + 2. Since n + 2 is a prime,
we must have 3 = n + 2, i.e. n = 1. Hovewer, n = 1 is not a prime, so this case is not
possible.
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If n ≡ 2 (mod 3) then n + 4 ≡ 6 ≡ 0 (mod 3) , i.e. 3|n + 4. Again, since n + 4 is
prime, we have n + 4 = 3, i.e. n = −1, which is not possible.

Thus n = 3 is the only solution.

Problem 12. Use Euler Theorem to find the remainder upon division of n by m, where

a) n = 29202, m = 13;

b) n = 99999999, m = 23

c) n = 29198, m = 20

d) n = 31000000, m = 14

Solution: a) Note that 29 ≡ 3 (mod 13) . Thus 29202 ≡ 3202 (mod 13) . It suffices
then to find remainder upon division of 3202 by 13.

By Euler’s theorem (or its special case Fermat’s Little Theorem) we have 312 ≡
1 (mod 13) . Now 202 = 12 · 16 + 10. Thus

3202 = 312·16+10 = (312)16 · 310 ≡ 310 (mod 13) .

Now 310 = 95 and 9 ≡ −4 (mod 13) . Thus

310 ≡ (−4)5 = (−4) · 162 ≡ (−4) · 32 = (−4) · 9 ≡ (−4)2 = 16 ≡ 3 (mod 13) .

Thus the remainder is 3.
Note: The solution can be simplified by observing that 33 ≡ 1 (mod 13) .

b) Note that 99 ≡ 7 (mod 23) , so 99999999 ≡ 7999999 (mod 23) . By Euler’s theorem,
722 ≡ 1 (mod 23) . Now we want to find r such that 999999 = 22 · k + r and 0 ≤ r < 22.
Note that both 999999 and 22 are divisible by 11 and therefore so is r. Thus r = 0 or
r = 11. Since r must be odd, we have r = 11 (alternatively, you can find r by performing
division algorithm). It follows that

7999999 ≡ 711 = 7 · 495 ≡ 7 · 35 = 21 · 81 ≡ (−2) · 12 = −24 ≡ 22 (mod 23) .

Thus the remainder is 22.

c) Note that 29 ≡ 9 = 32 (mod 20) , so 29198 ≡ 3396 (mod 20) . Now φ(20) = φ(4 · 5) =
φ(4)φ(5) = 2 · 4 = 8, so 38 ≡ 1 (mod 20) . Now 396 = 8 · 49 + 4. Thus

3396 ≡ 34 = 81 ≡ 1 (mod 20) .

Thus the remainder is 1.

d) Note that φ(14) = φ(2 · 7) = φ(2)φ(7) = 6. Also, 1000000 = 6k + 4 for some k. Thus

31000000 ≡ 34 = 81 ≡ 11 (mod 14) .

Thus the remainder is 11.

Problem 13. Prove that if n is relatively prime to 72 then n12 ≡ 1 (mod 72) .
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Solution: Note that 72 = 8 · 9. Since φ(8) = 4, we have n4 ≡ 1 (mod 8) for any n
relatively prime to 8. It follows that n12 ≡ 1 (mod 8) for any n such that gcd(8, n) = 1.

Similarly, φ(9) = 6 so n6 ≡ 1 (mod 9) for any n relatively prime to 9. It follows that
if gcd(n, 9) = 1 then n12 ≡ 1 (mod 9) .

Suppose that gcd(n, 72) = 1. Then both gcd(n, 8) = 1 = gcd(n, 9). Thus n12 ≡
1 (mod 8) and n12 ≡ 1 (mod 9) . In other words, 8|n12 − 1 and 9|n12 − 1. Since 8 and 9
are relatively prime, we have 8 · 9 = 72|n12 − 1, i.e. n12 ≡ 1 (mod 72) .

Remark. Note that what we proved is stronger than what Euler’s theorem implies
for 72. In fact, φ(72) = φ(8)φ(9) = 4 · 6 = 24, so we only get n24 ≡ 1 (mod 72) from
Euler’s theorem for 72.

Problem 14. Let p, q be distinct prime numbers. Prove that

pq−1 + qp−1 ≡ 1 (mod pq) .

Solution: Since p 6= q are prime numbers, we have gcd(p, q) = 1. By Fermat’s Little
Theorem, pq−1 ≡ 1 (mod q) . Clearly qp−1 ≡ 0 (mod q) . Thus

pq−1 + qp−1 ≡ 1 (mod q) .

Exchanging the roles of p and q in the above argument, we prove that

pq−1 + qp−1 ≡ 1 (mod p) .

In other words, pq−1 + qp−1 − 1 is divisible by both p and q. Since p and q are relatively
prime, we conclude that pq−1 + qp−1 − 1 is divisible by pq, i.e. pq−1 + qp−1 ≡ 1 (mod pq) .

Problem 15. Let m, n be positive integers such that m|n. Prove that φ(m)|φ(n) and
that φ(mn) = mφ(n)

Solution: Since m|n, we can number the prime divisors of n such that

m = pa1

1 ...pas

s and n = pb1
1 ...pbs

s p
bs+1

s+1 ...pbt

t ,

where t ≥ s, 0 < ai ≤ bi for i = 1, 2, ..., s and 0 < bi for i > s, and p1, ..., pt are pairwise
distinct prime numbers.

Now
φ(m) = (p1 − 1)pa1−1

1 ...(ps − 1)pas−1
s

and
φ(n) = (p1 − 1)pb1−1

1 ...(ps − 1)pbs−1
s (ps+1 − 1)pbs+1−1...(pt − 1)pbt−1

t .

It is clear now that φ(m)|φ(n). Moreover, mn = pa1+b1
1 ...pas+bs

s p
bs+1

s+1 ...pbt

t and

φ(mn) = (p1 − 1)pa1+b1−1
1 ...(ps − 1)pas+bs−1

s (ps+1 − 1)pbs+1−1...(pt − 1)pbt−1
t = mφ(n).

Second solution: Suppose that the result is false and let m|n be a counterexample with
smallest possible n. Clerly m > 1 (since the result holds trivially for m = 1). Let p be
a prime divisor of m. Thus we can write m = pam1 and n = pbn1 for some 0 < a ≤ b
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and natural numbers n1, m1 not divisible by p. Since m1|n = pbn1 and gcd(p, m1) = 1, we
have m1|n1. Also

φ(m) = φ(pa)φ(m1) = (p − 1)pa−1φ(m1),

φ(n) = φ(pb)φ(n1) = (p − 1)pb−1φ(n1)

and
φ(mn) = φ(pa+b)φ(m1n1) = (p − 1)pa+b−1φ(m1n1).

Since m1|n1 and n1 < n, the result is true for m1, n1, i.e. φ(m1)|φ(n1) and φ(m1n1) =
m1φ(n1). But then

φ(m) = (p − 1)pa−1φ(m1)|(p − 1)pb−1φ(m1)|(p − 1)pb−1φ(n1) = φ(n)

and
φ(mn) = (p − 1)pa+b−1φ(m1n1) = pam1(p − 1)pbφ(n1) = mφ(n)

so the result is true for m, n contrary to our assumption. The contradiction proves that
no counterexample to our result exists.

Problem 16. Compute φ(2592), φ(111111), φ(15!).

Solution: We have

2592 = 4 · 648 = 4 · 4 · 162 = 25 · 81 = 25 · 34

Thus φ(2592) = φ(25)φ(34) = 24 · 2 · 33 = 25 · 33.
Clearly 111111 is divisible by 11,3 so

111111 = 11 · 10101 = 11 · 3 · 3367

Now 3367 is divisible by 7: 3367 = 7 · 481. The next prime to consider is 13 and indeed
481 = 13 · 37. Thus 111111 = 3 · 7 · 11 · 13 · 37 and

φ(111111) = φ(3)φ(7)φ(11)φ(13)φ(37) = 2 · 6 · 10 · 12 · 36 = 27 · 34 · 5.

Finally 15! = 211 · 36 · 53 · 72 · 11 · 13, so

φ(15!) = φ(211)φ(36)φ(53)φ(72)φ(11)φ(13) = 210 · 2 · 35 · 4 · 52 · 6 · 7 · 10 · 12 = 217 · 37 · 53 · 7.

Problem 17. Prove that 561 is a composite number and a561 ≡ a (mod 561) for every
integer a.

Solution: Let us first note the following corollary from Fermat’s Little Theorem:

Proposition 1. Let p be a prime number. For any integer n and any natural number k
we have nk(p−1)+1 ≡ n (mod p) .

Indeed, if p|a then both sides of the congruence are ≡ 0 (mod p) and if gcd(p, a) = 1
then np−1 ≡ 1 (mod p) and nk(p−1)+1 = n(np−1)k ≡ n (mod p) .

We have 561 = 3 · 187 = 3 · 11 · 17, so 561 is not a prime. Now 561 = 280 · 2 + 1 =
56 · 10 + 1 = 35 · 16 + 1. By the proposition, n561 ≡ n (mod 3) , n561 ≡ n (mod 11) and
n561 ≡ n (mod 17) for every integer n. Thus n561 − n is divisible by 3, 11, 17 and since
these numbers are pairwise relatively prime, 3 · 11 · 17|n561 − n, i.e. n561 ≡ n (mod 561)
for every integer n.
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Problem 18. Let p be a prime number and let n be a positive integer such that p4|n3.
Prove that p2|n.

Solution: Suppose that pk ‖ n (i.e. pk is the highest power of p which divides n).
Then p3k ‖ n3 and therefore 3k ≥ 4. Since k is an integer, we have k ≥ 2 and therefore
p2|n.

Second solution: Clearly p4|n3 implies that p|n3. Since p is prime we have p|n, i.e. n = pm
for some integer m. Now p4|n3 = p3m3 implies that p|m3. Again, since p is a prime
number, we get p|m. It follows that m = pk for some integer k, so n = pm = p2k, i.e.
p2|n.
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