
Solutions to Exam 1

Problem 1. a) State Fermat’s Little Theorem and Euler’s Theorem.

b) Let m, n be relatively prime positive integers. Prove that

mφ(n) + nφ(m) ≡ 1 (mod mn) .

c) Find the remainder of 312008 upon division by 36.

Solution: a)
Fermat’s Little Theorem: Let p be a prime. Then

ap−1 ≡ 1 (mod p)

for any integer a not divisible by p.

Euler’s Theorem: Let n be a positive integer. Then

aφ(n) ≡ 1 (mod n)

for any integer a relatively prime to n.

b) By Euler’s Theorem, mφ(n) ≡ 1 (mod n) . Clearly nφ(n) ≡ 0 (mod n) . Thus

mφ(n) + nφ(n) ≡ 1 (mod n) .

Similarly, nφ(m) ≡ 1 (mod m) and mφ(m) ≡ 0 (mod m) so

mφ(n) + nφ(n) ≡ 1 (mod m) .

In other words, mφ(n) + nφ(n) − 1 is divisible by both m and n. Since m and n are
relatively prime, we conclude that mφ(n) +nφ(n)−1 is divisible by mn, i.e. mφ(n) +nφ(n) ≡
1 (mod mn) .

c) Note that (31, 36) = 1. Thus 31φ(36) ≡ 1 (mod 36) by Euler’s Theorem. Now 36 = 22 ·
32, so φ(36) = 2·3·3 = 12. Therefore 3112 ≡ 1 (mod 36) . Observe that 2008 = 12·167+4,
so

312008 = (3112)167 · 34 ≡ 314 (mod 36) .

Thus it suffices to find the remainder of 314 upon division by 36. Since 31 ≡ −5 (mod 36) ,
we have 312 ≡ (−5)2 = 25 ≡ −11 (mod 36) , and 314 ≡ (−11)2 = 121 ≡ 13 (mod 36) .
The reminder in question is therefore equal to 13.

Problem 2. a) State Chinese Remainder Theorem.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division
by 3, 5, 7 respectively. Show your work.
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Solution: a)
Chinese Remainder Theorem: Let n1, ..., nk be pairwise relatively prime positive in-
tegers and let N = n1 ·n2 · ... ·nk. Given any integers a1, ..., ak, the system of congruences
x ≡ ai (mod ni) , i = 1, 2, ..., k, has unique solution x such that 0 ≤ x < N . Moreover, an
integer y satisfies these congruences iff N |(x−y) (so all integers satisfying the congruences
are given by x + mN , m ∈ Z).

b) The problem asks us to find all integers x such that 0 < x < 200 and

x ≡ 1 (mod 3) , x ≡ 3 (mod 5) , x ≡ 4 (mod 7) .

In order to find a solution to these congruences, we follow the algorithm. We have N =
3 · 5 · 7 = 105, N1 = 35, N2 = 21, N3 = 15.

We solve N1x1 ≡ 1 (mod 3) , i.e. 2x1 ≡ 1 (mod 3) , which has a solution x1 = 2.
Next we solve N2x2 ≡ 3 (mod 5) , i.e. x2 ≡ 3 (mod 5) , which has a solution x2 = 3.
Finally, we solve N3x3 ≡ 4 (mod 7) , i.e. x3 ≡ 4 (mod 7) , which has a solution x3 = 4.

A solution is given by x = N1x1+N2x2+N3x3 = 70+63+60 = 193. The smallest positive
solution is then 193− 105 = 88 and all solutions are given by the formula x = 88 + 105m,
m ∈ Z. We get a positive solution smaller than 200 only for m = 0, 1, so 88 and 193 are
the only solutions to our problem.

Problem 3. a) Define (a, b). Using Euclid’s algorithm compute (889, 168) and find x, y ∈
Z such that (889, 168) = x · 889 + y · 168 (check your answer!).

b) Let a be an integer. Prove that (3a + 5, 7a + 12) = 1. Hint: If d|u and d|w then
d|su + tw for any integers s, t.

Solution: a) gcd(a, b) is the largest positive integer which divides both a and b. It is
called the greatest common divisor of a and b.

Euclid’s algorithm yields:
889 = 5 · 168 + 49,

168 = 3 · 49 + 21,

49 = 2 · 21 + 7,

21 = 3 · 7 + 0.

It follows that gcd(889, 168) = 7. Working backwards,

7 = 49−2·21 = 49−2·(168−3·49) = 7·49−2·168 = 7·(889−5·168)−2·168 = 7·889−37·168.

Thus x = 7, y = −37 work.

b) Note that 3(7a + 12) + (−7)(3a + 5) = 1. Thus any common divisor of 3a + 5 and
7a + 12 must divide 1. It follows that gcd(3a + 5, 7a + 12) = 1.

Problem 4. Solve the following congruences

a) 18x ≡ 12 (mod 28) b) 3x2 + 2x − 4 ≡ 0 (mod 17)
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Solution: a) Using Euclid’s algorithm we find that (18, 28) = 2. Thus the congruence
18x ≡ 12 (mod 28) has two solutions modulo 28, given by x ≡ x0 (mod 28) or x ≡
x0 + 14 (mod 28) , where x0 is any particular solution. To find a particular solution, we
work the Euclid’s algorithm backwards to get 2 = 2 · 28 + (−3) · 18. Multiplying by 6, we
see that 12 = 12·28−18·18 ≡ 18·(−18) (mod 28) . Thus x0 = −18 is a particular solution
so the solutions are x ≡ −18 (mod 28) or x ≡ −4 (mod 28) , which can be written as
x ≡ 10 (mod 28) or x ≡ 24 (mod 28) .

b) Note that 3 ·6 = 18 ≡ 1 (mod 17) , i.e. 6 is the inverse of 3 modulo 17. We multiply our
congruence by 6 and get 18x2 + 12x− 24 ≡ 0 (mod 17) , i.e. x2 + 12x− 7 ≡ 0 (mod 17) .
Now we complete to squares:

x2 + 12x − 7 = (x + 6)2 − 36 − 7 ≡ (x + 6)2 − 9 (mod 17) .

Thus (x + 6)2 ≡ 9 = 32 (mod 17) and therefore x + 6 ≡ 3 (mod 17) or x + 6 ≡
−3 (mod 17) . Equivalently, x ≡ −3 ≡ 14 (mod 17) or x ≡ −9 ≡ 8 (mod 17) .

Problem 5. a) Define the Legendre symbol
(

a
p

)

(state clearly all assumptions) and state

its properties.

b) Is 91 a quadratic residue modulo 127? Justify your answer.

Solution: a) An integer a is called a quadratic residue modulo a prime p if p ∤ a and
a ≡ x2 (mod p) for some integer x. An integer a is called a quadratic non-residue

modulo a prime p if there is no integer x such that a ≡ x2 (mod p) . When p is an odd

prime and p ∤ a then we define the Legendre symbol
(

a
p

)

as follows

(

a

p

)

=

{

1 if a is a quadratic residue modulo p;

−1 if a is a quadratic non-residue modulo p.

Legendre symbol has the following properties.

1. If a ≡ b (mod p) then
(

a
p

)

=
(

b
p

)

.

2.
(

a2

p

)

= 1 for any integer a relatively prime to p.

3.
(

ab
p

)

=
(

a
p

) (

b
p

)

for any integers a, b relatively prime to p.

4. Euler’s Criterion: a(p−1)/2 ≡
(

a
p

)

(mod p) .

5.
(

2
p

)

=

{

1 if p ≡ 1, 7 (mod 8) ;

−1 if p ≡ 3, 5 (mod 8) .
and

(

−1
p

)

=

{

1 if p ≡ 1 (mod 4) ;

−1 if p ≡ 3 (mod 4) .

6. Qadratic Reciprocity: If p and q are distinct odd prime numbers then

(

q
p

)

=







−
(

p
q

)

if p ≡ 3 ≡ q (mod 4) ;
(

p
q

)

if at least one of p, q is ≡ 1 (mod 4) .
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b) Note that 91 ≡ −36 (mod 127) . Thus, by properties 1,2,5 we have

(

91

127

)

=

(

−36

127

)

=

(

−1

127

) (

36

127

)

=

(

−1

127

)

= −1.

Thus 91 is not a quadratic residue modulo 127.

Second method. Note that 91 = 7 · 13. We use the quadratic reciprocity:

(

91

127

)

=

(

7

127

) (

13

127

)

= −

(

127

7

) (

127

13

)

= −

(

1

7

) (

10

13

)

= −

(

2

13

) (

5

13

)

=

=

(

5

13

)

=

(

13

5

)

=

(

3

5

)

=

(

5

3

)

=

(

2

3

)

= −1.

Thus 91 is not a quadratic residue modulo 127.

Problem 6. a) Define a primitive root modulo m. Prove that 2 is a primitive root modulo
25.

b) Show that if (a, 77) = 1 then 77 divides a30 − 1.

c) Is there a primitive root modulo 77? Explain your answer.

Solution: a) A primitive root modulo m is any integer a such that ordma = φ(m). In
other words, a is a primitive root modulo m if aφ(m) ≡ 1 (mod m) and ak 6≡ 1 (mod m)
for 1 ≤ k < φ(m).

We have φ(25) = φ(52) = 5 · 4 = 20. Thus, the order of 2 modulo 25 is a divisor of
20, so it can be 1, 2, 4, 5, 10 or 20. By inspection, we check that 20 is the smallest among
these exponents which works. Thus the order of 2 modulo 25 is equal to 20 and therefore
2 is a primitive root modulo 25.

b) Note that 77 = 7 · 11. If (a, 77) = 1 then (a, 7) = 1 = (a, 11). Thus, by Fermat’s Little
Theorem, we have a6 ≡ 1 (mod 7) and a10 ≡ 1 (mod 11) . Raising both sides of the
first congruence to the power 5 and both sides of the second to the power 3 we get a30 ≡
1 (mod 7) and a30 ≡ 1 (mod 11) . Since (7, 11) = 1, we conclude that a30 ≡ 1 (mod 77) .

c) Note that φ(77) = φ(7 · 11) = 6 · 10 = 60. If a were a primitive root modulo 77 then
ord77a = 60. However, we know by part b) that a30 ≡ 1 (mod 77) , so ord77a|30 and
therefore the order cannot be 60. This proves that there does not exist a primitive root
modulo 77.

Problem 7. Prove that n21 ≡ n (mod 30) for every integer n.

Solution: Let us note that if p is a prime then nk(p−1)+1 ≡ n (mod p) for any integer n
and any k > 0. In fact, if p|n then both sides are ≡ 0 (mod p) and if p ∤ n then Femrat’s
Little Theorem tells us that np−1 ≡ 1 (mod p) so

nk(p−1)+1 = (np−1)k · n ≡ n (mod p) .
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We apply this observation to p = 2, 3, 5. Since 21 = 20 · (2 − 1) + 1 = 10 · (3 − 1) + 1 =
5 · (5 − 1) + 1, we have

n21 ≡ n (mod 2) , n21 ≡ n (mod 3) , n21 ≡ n (mod 5) .

In other words, n21 − n is divisible by 2, 3 and 5 and since these numbers are pairwise
relatively prime, n21 − n is divisible by their product 2 · 3 · 5 = 30, i.e. n21 ≡ n (mod 30)

Problem 8. Let p be a prime such that p ≡ 2 (mod 3) . Prove that the equation
x3 ≡ a (mod p) is solvable for every integer a.

Solution: Let g be a primitive root modulo p. If p|a then x = 0 is a solution. If
(a, p) = 1 then a ≡ gk (mod p) for some k. We would like to find m > 0 such that gk ≡
g3m (mod p) . Then x = gm is a solution. Since the order of g modulo p is p− 1, we have
gk ≡ g3m (mod p) iff (p − 1)|(k − 3m), i.e. k ≡ 3m (mod p − 1) . Since p ≡ 2 (mod 3) ,
we have (p−1, 3) = 1 and therefore for any k there is an m such that k ≡ 3m (mod p − 1) .
Clerly we can choose such m positive, and then x = gm is a solution.

Problem 9. Let p be an odd prime such that p|a2 + b2 for some integers a, b relatively
prime to p. Prove that p ≡ 1 (mod 4)

Solution: We have a2 ≡ −b2 (mod p) . Raising both sides to the power (p− 1)/2 we get

ap−1 ≡ (−1)(p−1)/2bp−1 (mod p) .

Since ap−1 ≡ 1 ≡ bp−1 (mod p) by Fermat’s Little Theorem, we see that 1 ≡ (−1)(p−1)/2 (mod p) .
This implies that 1 = (−1)(p−1)/2, which holds if and only if p ≡ 1 (mod 4) .

Second solution: We have a2 ≡ −b2 (mod p) . Since a, b are not divisible by p, we can
use Legendre symbol:

1 =

(

a2

p

)

=

(

−b2

p

)

=

(

−1

p

) (

b2

p

)

=

(

−1

p

)

.

By property 5,
(

−1
p

)

= 1 if and only if p ≡ 1 (mod 4) .
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