Homework 11 due on Wednesday, August 3

Read carefully sections 1,2 of Chapter 2 in Shen's book and and sections 2.6, 2.7 in Stoll's book. Solve the following problems.

Problem 1. a) Prove that the sets $\mathbb{N} \times \mathbb{Z}$ and $\mathbb{Z} \times \mathbb{Z}$ (with lexicographic order) are not isomorphis. Hint. Look at (0,0) in $\mathbb{N} \times \mathbb{Z}$ and all the elements below it.

b) Consider the set $\mathbb{N} \times \mathbb{N}$ with the order \leq_d defined as follows: $(a, b) \leq_d (c, d)$ if either a + b < c + d or a + b = c + d and $a \leq c$. Prove that \leq_d is a linear order and that $(\mathbb{N} \times \mathbb{N}, \leq_d)$ is isomorphic to \mathbb{N} with its natural order. Hint: Use a theorem from class which characterizes \mathbb{N} .

Problem 2. Let (A, \leq) be a partially ordered set. Suppose that $a, b \in A$ are two elements which are not comparable. Define w new relation \leq_n on A as follows: $x \leq_n y$ iff either $x \leq y$ or $x \leq a$ and $b \leq y$. Prove that \leq_n is a partial order on A which extends \leq and that $a \leq_n b$.

Problem 3. Let (A, \leq) be a partially ordered set. Let H(A) be the set of all antichains in A. In other words, elements of H(A) are those subsets of A which are antichains. Define a relation \ll on H(A) as follows: $X \ll Y$ if for any $x \in X$ there is $y \in Y$ such that $x \leq y$.

a) Prove that \ll is a partial order on H(A).

b) Let X, Y be elements of H(A). Let Z be the set of all maximal elements in the set $X \cup Y$. Prove that $Z \in H(A)$ and that Z is the least upper bound of X and Y with respect to the order \ll .

c) Suppose that A has no atichains with k + 1 elements. Let X and Y be antichains with k elements. Let Z be defined as in b) and let W be the set of all minimal elements in the set $X \cup Y$. Prove that Z and W both have k elements and that W is in H(A) and it is the largest lower bound for X and Y.