Homework 12 due on Friday, August 5

Read carefully sections 4,5 of Chapter 2 in Shen's book and and sections 2.6, 2.7 in Stoll's book. Solve the following problems.

Problem 1. Let (A, \leq_A) be a well ordered set and let B, \leq_B be a prtially ordered set. We deline a relation \leq of B^A as follows. Let $f, g : A \longrightarrow B$ be elements of B^A . We say that $f \leq g$ if either f = g or for the smallest $a \in A$ such that $f(a) \neq g(a)$ we have $f(a) \leq_B g(a)$ (note that such smallest a exists since A is well ordered).

a) Prove that \leq is a parial order on B^A .

b) Suppose that \leq_B is a linear order on B. prove that \leq is a linear order of B^A .

c) Let $A = \mathbb{N}$ and $B = \{0, 1\}$. Prove that the order \leq on B^A is not a well order. Hint: find an infinite decreasing sequence in B^A .

d) Suppose that \leq is a well order. Prove that \leq_B is a well order. Hint: prove that B is isomorphic to a subset of B^A . Prove that A is finite if B has more than one element. Hint: Use c).

Problem 2. Let R be a relation on a set A which is antisymmetric. Suppose that for any non-empty subset B of A there is $u \in B$ such that uRb for all $b \in B$. Prove that R is a well order.