Homework 7

due on Friday, July 21

Read carefully sections 5 of Chapter 1 in Shen's book and and sections 2.3 in Stroll's book. Solve the following problems.

Problem 1. Let $f : A \longrightarrow B$ and $g : B \longrightarrow A$ be functions. Define a function $H : \mathcal{P}(A) \longrightarrow \mathcal{P}(A)$ as follows: $H(X) = A \setminus g(B \setminus f(X))$.

a) Prove that H is an increasing function. Conclude that there is a subset S of A such that H(S) = S (use Problem 3 from homework 6).

b) Prove that g maps $B \setminus f(S)$ onto $A \setminus S$.

c) Suppose in addition that both f and g are injective. Prove that g gives a bijection form $B \setminus f(S)$ onto $A \setminus S$ and f gives a bijection from S onto f(S).

d) Use c) to give another proof of the Cantor-Berenstein-Schroder Theorem. Hint: $A = (A \setminus S) \cup S$.

Problem 2. a) Let A, B be sets. Prove that if $A \simeq B$ then $2^A \simeq 2^B$.

b) Let A and B be disjoint sets. Prove that $2^A \times 2^B \simeq 2^{A \cup B}$.

c) Prove that if A is denumerable and B is countable then $2^A \times 2^B \simeq \mathbb{R}$. Hint: Note first that one can assume that A and B are disjoint.

Problem 3. Let $A_0, A_1, ...$ be a sequence of sets such that $A_i \simeq \mathbb{R}$ for all *i*. Let $A = \bigcup_{i=0}^{\infty} A_i$ be the union of all these sets. Prove that $A \simeq \mathbb{R}$. Hint: Embed A into $\mathbb{R} \times \mathbb{R}$, or even $\mathbb{R} \times \mathbb{N}$.