
Solutions to Exam

Math 488A, 575A, 590A

Problem 1. a) What does it mean that sets A and B have the same cardinality? (5 points)

b) What does it mean that the cardinality of A is less than or equal to the cardinality of B? (5 points)

c) State the Cantor-Bernstein-Schröder Theorem. (5 points)

Solution: a) We say that the sets A, B have the same cardinality if there is a bijective function
f : A −→ B.

b) We say that the cardinality of A is less than or equal to the cardinality of B if there is an injective
function f : A −→ B.

c) Cantor-Bernstein-Schröder Theorem: Let A, B be sets such that there is an injective function from
A into B and an injective function from B into A. Then there is a bijective function f : A −→ B.

Problem 2. a) What does it mean that a set is denumerable? What does it mean that a set is
countable? (5 points)

b) Let A be a set with at least 2 elements. For i = 1, 2, 3, . . . let fi : N −→ A be a function. Use
Cantor’s diagonal method to prove that there is a function f : N −→ A which is not equal to any of
the functions f1, f2, . . .. Conclude that the set AN is not countable. (12 points)

Solution: a) A set A is called denumerable if A and N have the same cardinality, i.e. if there is a
bijective function from N onto A. A set is countable if it is either finite or denumerable.

b) The idea is to define a function f : N −→ A which differs from f1 at 1, differs from f2 at 2, differs
from f3 at 3, etc. Choose two elements a, b in A (here we use the assumption that A has at least 2
elements). Define f as follows: given k ∈ N we define

f(k) =

{

a if fk(k) 6= a

b if fk(k) = a

Since, for every k, the functions f and fk have different values at k, the function f is not equal to any
of the functions f1, f2, . . ..

Problem 3. a) Prove that (A \B)∩ (C \D) = (A∩C) \ (B ∪D) by starting with an element in the
left hand side and proving that it is in the right hand side and vice versa. (6 points)

b) Use membership table to prove that (A \ B) △ (A \ C) = A ∩ (B △ C). (6 points)

c) Express each side of the equality

(A \ B) ∪ (B \ C) = (A ∪ B) \ (B ∩ C)

using only the operation + of symmetric difference and · of intersection. Then verify that both sides
are indeed equal. (6 points)

Solution: a) Note that x ∈ (A \ B) ∩ (C \ D) if and only if x ∈ (A \ B) and x ∈ (C \ D), which is
equivalent to the conditions x ∈ A and x 6∈ B and x ∈ C and x 6∈ D, which in turn is equivalent to the
conditions x ∈ A and x ∈ C and x 6∈ B and x 6∈ D which is equivalent to x ∈ (A∩C) and x 6∈ (B∪D),
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which is equivalent to x ∈ (A ∩ C) \ (B ∪ D). Thus the sets (A \ B) ∩ (C \ D) and (A ∩ C) \ (B ∪ D)
have the same elements and therefore they are equal.
Remark. To be on a safe side, one can do the two inclusions (A \ B) ∪ (B \ C) ⊆ (A ∪ B) \ (B ∩ C)
and (A ∪ B) \ (B ∩ C) ⊆ (A \ B) ∪ (B \ C) separately.

b)

A B C A \ B A \ C (A \ B) △ (A \ C) B △ C A ∩ (B △ C)

1 1 1 0 0 0 0 0
1 1 0 0 1 1 1 1
1 0 1 1 0 1 1 1
1 0 0 1 1 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0

Since the columns for (A \ B) △ (A \ C) and A ∩ (B △ C) are equal, we conclude that
(A \ B) △ (A \ C) = A ∩ (B △ C).
Remark. The first three columns of the table describe all possible membership patterns. For ex-
ample, the first row corresponds to elements which belong to all three sets A, B, C, and the 4th row
corresponds to elements which belong to A but do not belong to B or C. The second part of the table
is then filled by going through each row and putting 1 if the elements described by the first part of
the row belong to the set naming a given column and putting 0 if they do not belong to this set. For
example, in the second row in the column for A \C we put 1, since elements in this row belong to A,
B but not C so they belong to A \ C.

c) Recall that X \ Y = X + XY and X ∪ Y = X + Y + XY . We have

(A\B)∪(B\C) = (A+AB)+(B+BC)+(A+AB)(B+BC) = A+AB+B+BC+AB+ABC+ABB+

+ABBC = A + B + AB + BC + AB + AB + ABC + ABC = A + B + AB + BC.

(we use the properties X + X = 0 and XX = X). Similarly,

(A ∪ B) \ (B ∩ C) = (A + B + AB) + (A + B + AB)BC = A + B + AB + ABC + BBC + ABBC =

= A + B + AB + BC + ABC + ABC = A + B + AB + BC.

We see that both (A \B)∪ (B \C) and (A∪B) \ (B ∩C) are equal to A + B + AB + BC, hence they
are equal to each other.

Problem 4. a) Let A be a subset of B. Prove that for any set C we have AC 4 BC . (6 points)

b) Using a) and the arithmetic of cardinal numbers prove that N
N ≃ R. State all results you are using.

(10 points)

Solution: a) Since A is a subset of B, any function which maps C into A is automatically a function
from C into B. This shows that AC ⊆ BC and therefore AC 4 BC .

We will prove a more general result, that if A 4 B then AC 4 BC . Indeed, since A 4 B, there is an
injective function h : A −→ B. Using this function, we define a function Φ : AC −→ BC as follows:
for any f ∈ AC , i.e. f : C −→ A we set Φ(f) = hf . Clearly hf is a function from C into B, so
Φ(f) ∈ BC . We need to prove that Φ is injective. Suppose that Φ(f1) = Φ(f2). Then hf1 = hf2.
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Thus, for any c ∈ C we have h(f1(c)) = h(f2(c)). Since h is injective, we conclude that f1(c) = f2(c).
Since c was an arbitrary element of C, we see that f1 = f2. This proves that Φ : AC −→ BC is
injective. It follows that AC 4 BC . In the language of cardinal numbers this result means that if α,
β, γ are cardinal numbers and α ≤ β then αγ ≤ βγ .

b) Let ℵ0 = |N|. Then, as we proved, |R| = 2ℵ0 . Since 2 ≤ ℵ0, we get from part a) that 2ℵ0 ≤ ℵℵ0

0
.

On the other hand, ℵ0 ≤ 2ℵ0 , so ℵℵ0

0
≤ (2ℵ0)ℵ0 (again by part a)). But (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 , as

ℵ0 · ℵ0 = ℵ0. Thus we see that 2ℵ0 ≤ ℵℵ0

0
and ℵℵ0

0
≤ 2ℵ0 . By the Cantor-Bernstein-Schröder theorem,

we get ℵℵ0

0
= 2ℵ0 . This means that N

N ≃ R, as |NN| = ℵℵ0

0
and |R| = 2ℵ0 .

Problem 5. a) Let f : A −→ B be a surjective functions. Let g : B −→ C, h : B −→ C be functions
such that gf = hf . Prove that g = h. Show by example that the result is no longer true when the
assumption that f is surjective is dropped. (8 points)

b) Let f : X −→ Y be a function and let A, B be subsets of Y . Prove that
f−1(A \ B) = f−1(A) \ f−1(B). Start your solution with ”Let u ∈ f−1(A \ B)”. (8 points)

Solution: a) Let b ∈ B. We need to prove that g(b) = h(b). Since f is surjective, there is a ∈ A such
that f(a) = b. Then g(b) = g(f(a)) = (gf)(a) = (hf)(a) = h(f(a)) = h(b). Since b is an arbitrary
element of B, we get g = h.

b) Let x ∈ f−1(A \ B). This means that f(x) ∈ A \ B, i.e. f(x) ∈ A and f(x) 6∈ B. Thus
x ∈ f−1(A) and x 6∈ f−1(B), which implies that x ∈ f−1(A) \ f−1(B). This proves that f−1(A \B) ⊆
f−1(A) \ f−1(B).

Conversely, suppose that x ∈ f−1(A) \ f−1(B). Then x ∈ f−1(A) and x 6∈ f−1(B), so f(x) ∈ A

and f(x) 6∈ B. Thus f(x) ∈ A \B and therefore x ∈ f−1(A \B). This proves that f−1(A) \ f−1(B) ⊆
f−1(A \ B).

Since we proved that f−1(A\B) ⊆ f−1(A)\f−1(B) and f−1(A)\f−1(B) ⊆ f−1(A\B), we conclude
that f−1(A \ B) = f−1(A) \ f−1(B).

Problem 6. a) State the definition of a relation R on a set A. What does it mean that R is transitive?
What does it mean that R is antisymmetric? Define a relation R on the set A = {1, 2, 3, 4} which is
reflexive, neither symmetric nor antisymmetric. (8 points)

b) Let ≤ be a partial order on a set A. Suppose that a, b are two elements of A which are not
comparable. Let Aa be the set of all elements comparable with a. Similarly, let Ab be the set of all
elements comparable with b. Prove that if x ∈ Aa ∩ Ab then either x is smaller than each of a, b or x

is larger that each of a, b. (5 points)

c) Let A be a set. Consider the following relation R on the set P(A): XRY if and only if X △ Y is
countable. Prove that R is an equivalence relation. What is the equivalence class of the empty set?
Hint: (X △ Y ) △ (Y △ Z) = X △ Z (5 points).

Solution: a) A relation R on a set A is a subset R of A×A. Instead of writing (a, b) ∈ R one often
writes aRb and says that a is in relation R with b.
R is transitive if for any a, b, c ∈ A such that aRb and bRc, we have aRc.
R is antisymmetric if for any a, b ∈ A, if aRb and bRb,then a = b. In other words, if (a, b) ∈ R and
(b, a) ∈ R then a = b.

We define the relation R by listing all its elements. Since R is supposed to be reflexive, it must
contain (1, 1), (2, 2), (3, 3), (4, 4). To make R not symmetric we will add (1, 2) but not (2, 1). To ensure
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that it is not antisymmetric we add (3, 4) and (4, 3). Thus the relation

R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (3, 4), (4, 3)}

has all the required properties.

b) If x ∈ Aa ∩ Ab then x is comparable with both a and b and x is not equal to any of a, b. We have
therefore four possibilities:

a < x and x < b

x < a and b < x

a < x and b < x

x < a and x < b.

In the first case, we get a < b by transitivity, which contradicts the assumption that a and b are not
comparable. Similarly, second case yields b < a, a again a contradiction. Thus only the last two cases
are possible, i.e. either x is smaller than each of a, b or x is larger that each of a, b.

c) We need to prove that the relation R is reflexive, symmetric, and transitive.
Since for any set X we have X △ X = ∅ and the empty set is countable, we see that XRX, i.e. R

is reflexive.
Suppose now that XRY . Then X △ Y is countable. But symmetric difference is commutative, os

Y △ X is countable, i.e. Y RX. This proves that R is symmetric.
Suppose that XRY and Y RZ. Then X △ Y and Y △ Z are countable sets. We have X △ Z =

(X △ Y ) △ (Y △ Z). Now if B, C are countable sets then so are B \ C and C \ B (since a subset of a
countable set is countable). It follows that B △ C = (B \ C) ∪ (C \ B) is also countable, since union
of two countable sets is countable. This shows that the symmetric difference of two countable sets is
countable. It follows that X △ Z is countable, i.e. XRZ. This proves that R is transitive.

The equivalence class of ∅ consists of all subsets X of A such that ∅RX. This means that ∅ △ X = X

is countable. Thus the equivalence class of ∅ consists of all countable subsets of A.


