
Let k be a field. Our goal is to show that the power series ring Rm = k[[x1, ..., xm]] in
m variables is a unique factorization domain (UFD). This result resembles the well known
fact that a polynomial ring over a field is a UFD. Usually the polynomial case is derived
by simple induction from the more general theorem that if A is a UFD then so is the
polynomial ring in one variable A[x]. Unfortunately, an analogous statement for power
series rings is false (i.e. there is a UFD A such that A[[x]] is not a UFD). There is a notion
of a regular ring (which extends the notion of a regular local ring) and it is true that if A

is a regular UFD then so is A[[x]] (and regular local rings are UFD), but it is not an easy
result.

Our proof that Rm is a UFD will prosceed by induction on m. Note that Rm can be
naturally identified with Rm−1[[xm]]. Assuming that Rm−1 is a UFD, the polynomial ring
Rm−1[x] is a UFD and our strategy is to relate the arithmetic of Rm to the one of Rm−1[x]
and derive that Rm is a UFD.

The following exercises should be a good way of getting acquainted with the power
series rings.

Exercise. Show that if A is a ring then a power series
∑

∞

k=0
akx

k ∈ A[[x]] (one variable)
is invertible iff a0 is invertible in A. Conclude that an element in Rm is invertible iff
its constant term is non-zero. Conclude that Rm is a local ring with maximal ideal
Mm =< x1, ..., xm >.

Exercise. Show that if A is a domain then so is A[[x]]. Prove that if A is Noetherian
then so is A[[x]] (this is an analog of Hilbert’s basis theorem for polynomial rings). Hint.
For an ideal I of A[[x]] consider the ideals Ik of A consisting of all a such that there is a
power series in I which starts with aXk.

We focus now on the ring Rm which we will often identify with Rm−1[[xm]]. We set
M = Mm−1 for the maximal ideal of Rm−1 and Mk[[xm]] for elements in Rm whose all
coefficients (as power series in xm) belong to Mk. The key to our proof is the following

Theorem 1. (Weierstrass Division Theorem) Let k be a field and let Rm = k[[x1, ..., xm]].
Suppose that f ∈ Rm is of the form f = uxs

m − w, where s ≥ 0 is an integer, u is a unit

of Rm, and w ∈ M [[xm]] is a polynomial in xm of degree < s. For any g ∈ Rm there

are unique h ∈ Rm and r ∈ Rm−1[x] such that r is a polynomial in xm of degree < s and

g = hf + r.

Proof: Note that any element g in Rm can be uniquely written as g = A(g)xs
m + B(g)

with A(g) ∈ Rm and B(g) ∈ Rm−1[xm] a polynomial in xm of degree < s. Clearly both
A and B are k-linear functions of g. Define T : Rm −→ Rm by T (g) = A(g)u−1f + B(g).
Clearly T is a k-linear map. We will show that T is an isomorphism (of k-vector spaces)
by finding its inverse. The idea is to make sense of the following formal identity:

T−1 = (I − (I − T ))−1 =
∞∑

i=0

(I − T )i,

where I is the identity. Note that g − T (g) = A(g)(X s
m − u−1f) = A(g)u−1w. If g ∈

Mk[[xm]] for some k ≥ 0 then clearly A(g) ∈ M k[[xm]] and therefore A(g)u−1 ∈ Mk[[xm]]
and A(g)u−1w ∈ Mk+1[[xm]] (since w has coefficients in M), i.e. g − T (g) ∈ M k+1[[xm]].
Let S(g) = g − T (g) = (I −T )(g). Thus Sj(g) ∈ M j [[xm]] for any g ∈ Rm and all j. Note
now that for any sequence hi of elements of Rm such that hi ∈ M i[[xm]], the sum

∑
∞

i=0
hi
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is a well defined element of Rm (since any monomial in x1, ..., xm appears in only a finite
number of the hi’s; more precisely, only monomials of degree ≥ i can appear in hi). In
particular, for any g ∈ Rm the sum

∑
∞

i=0
Si(g) is a well defined element of Rm and it

is now straightforward to verify that T −1 =
∑

∞

i=0
Si. To finish the proof of the theorem

note that g = hf + r as claimed in the theorem iff g = T (huxs
m + r), so the existence and

uniqueness follows from the fact that T is an isomorphism. 2

Before we make use of the last theorem let us discuss the assumption about f . We say
that f ∈ Rm is regular of order s at xm if f satisfies the assumption of the theorem,
i.e. if f = uxs

m −w for some integer s ≥ 0, a unit u of Rm and a polynomial w ∈ M [[xm]]
of degree < s. Equivalently, the monomial xs

m appears in f with non-zero coefficient and
s ≥ 0 is smallest integer with this property (so s, u, w are uniquely determined by f).
Another equivalent condition is that f(0, ..., 0, xm) is a non-zero power series in xm and xs

m

is the lowest power of xm appearing in f(0, ..., 0, xm) with non-zero coefficient. It follows
that if f is regular at xm and f = gh then both g and h are regular at xm as well. The
assumption that f is regular is not very restrictive. If k is an infinite field then any f

becomes regular after a linear change of variables. In fact, f =
∑

∞

j=0
Fj(x1, ..., xm), where

Fj is a homogeneous polynomial of degree j. Let s be smallest such that Fs 6= 0. Since
k is infinite, there is 0 6= a = (a1, a2, ..., am) ∈ km such that Fs(a1, ..., am) 6= 0. There
is an invertible matrix B = (bi,j) such that B(0, 0, ..., 0, 1) = a. The map sending xi to∑m

j=1
bi,jxj defines an automorphism of Rm and the image of f is regular of order s.

Exercise. The above argument does not work for finite fields. Show that the map sending
xi to xi + xni

m for i < m and fixing xm defines an automorphism of Rm and given f one
can choose n1, ..., nm−1 such that f is mapped to a regular element.

In order to formulate our next result we need one more definition. A polynomial in
Rm−1[xm] is called a Weierstrass polynomial of degree s if it is monic of degree s and
all its coefficients (except the leading one) are in M .

Theorem 2. (Weierstrass Preparation Theorem). Let f ∈ Rm be regular of order

s at xm. Then there is unique Weierstrass polynomial p of degree s such that f = vp for

some v invertible in Rm.

Proof: This result is a direct consequence of the Weierstrass Division Theorem. Write
p = xs

m+q, so q has degree < s and all coefficients in M . The equality f = vp is equivalent
to Xs = v−1f − q. By Weierstrass Division theorem, xs

m = hf + r for unique h ∈ Rm and
r ∈ Rm−1[xm] of degree < s. We need to show that h is invertible and r ∈ M [xm]. Note
that

xs
m = h(0, ..., 0, xm)f(0, ..., 0, xm)+r(0, ..., 0, xm) = h(0, ..., 0, xm)xs

mu(0, ..0, xm)+r(0, ..., 0, xm),

(where f = uxs
m − w). It follows that r(0, ..., 0, xm) = 0 and h(0, ..., 0, xm) has non-zero

constant term. In other words, r = q has all its coefficients in M and h = v−1 is invertible.
2

Corollary 1. Let f, g ∈ Rm be Weierstrass polynomials. Suppose that f = gh for some

h ∈ Rm. Then h is a Weierstrass polynomial.

Proof: Since f is regular at xm, so is h. Thus h = uq for some Weierstrass polynomial q

and invertible u. We have f = ugq. The uniqueness in Weierstrass Preparation Theorem
implies u = 1. 2
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Exercise. Let f, g ∈ Rm−1[xm] be polynomials. Suppose that g is Weierstrass and f = gh

for some h ∈ Rm. Show that h is a polynomial in Rm−1[xm].

Corollary 2. Let f ∈ Rm be a Weierstrass polynomial of degree s. Suppose that f = gh

for some g, h ∈ Rm. There is an invertible element u ∈ Rm such that ug, u−1h are

Weierstrass polynomials.

Proof: Note that Weierstrass polynomials are regular at xm. Thus both g, h are regular
at xm. By the Weierstrass Preparation Theorem, there is an invertible elements u such that
ug is a Weierstrass polynomial. Since f = (ug)(u−1h), u−1h is a Weierstrass polynomial
by Corollary 1. 2

Lemma 1. A Weierstrass polynomial f of degree s > 0 is irreducible in Rm iff it is

irreducible in Rm−1[xm]. Furthermore, every Weierstrass polynomial is a product of irre-

ducible Weierstrass polynomials.

Proof: If f is reducible in Rm then it is reducible in Rm−1[xm] by Corollary 2. Suppose
that f = gh is reducible in Rm−1[xm]. Since f is monic, the leading coefficients of g, h

are invertible in Rm−1 and we may assume that both g, h are monic of degrees i and s− i

respectively. Now xs
m = f(0, ..., 0, xm) = g(0, ..., 0, xm)h(0, ..., 0, xm). Since g(0, ..., 0, xm),

h(0, ..., 0, xm) are monic polynomials in k[xm] of degrees i, s− i respectively, we must have
g(0, ..., 0, xm) = xi

m, h(0, ..., 0, xm) = xs−i
m . Thus both g and h are Weierstrass polynomials.

In particular, neither g nor h is a unit of Rm. Thus f is not irreducible in Rm. This proves
the first part. For the second part note, the we have seen that a Weierstrass polynomial
which is not irreducible, factors into a product of Weierstrass polynomials of lower degrees.
It follows that if f is factored into largest possible number of Weierstrass polynomials then
each factor is irreducible. 2

Now we can prove our main result.

Theorem 3. The ring Rm is a UFD.

Proof: The proof is by induction on m. For m = 0, Rm = k is a field, hence UFD.
Suppose that Rm−1 is UFD. Then so is the polynomial ring Rm−1[xm]. In order to show
that Rm is a UFD we need to show that each element factors as a product of irreducible
elements (this is always true in Noetherian rings, but we are not going to use here the fact
that Rm is Noetherian) and each irreducible element is prime.

Let f ∈ Rm be irreducible and suppose that f |gh. As we have seen, there is an
automorphism of Rm which takes gh to an element regular at xm. So we may assume
that gh is regular and therefore also f, g, h are regular at xm. Thus f = up, g = vq,
h = wr, where u, v, w are units in Rm and p, q, r are Weierstrass polynomials. Since f is
irreducible, p is irreducible in Rm and hence in Rm−1[xm] (Lemma 1). Also, p|qr in Rm

so also p|rq in Rm−1[xm] (Corollary 1). But Rm−1[xm] is a UFD and p is irreducible, so
p|r or p|q. Thus f |g or f |h which shows that f is prime.

If f ∈ Rm is arbitrary, then as before, we may assume f is regular and f = up with
u invertible and p a Weierstrass polynomial. Since p factors as a product of irreducible
Weierstrass polynomials and each of them is irreducible in Rm, we get a factorization of
f into irreducible elements. 2

Exercise. Use the Weierstrass theorems (and Hilbert’s basis theorem) to give an inductive
proof that Rm are Noetherian rings.


