Math 147 - Elementary Statistics

Solutions for Spring 2020 Exam 02 Version A

This Exam is worth a total of 150 points.

Problem	1	2	3	4	5	6	7	8	9	Total
Points Earned										
Out of	18	15	15	23	20	16	20	8	15	150

1. - 18 points Answer each statement with True or False.

(I) The binomial formula:

- **a.** can be used when drawing tickets from a box without replacement.
- **b.** gives the chance that an event occurs exactly *k* times out of *n* trials.
- c. can be used when the probability of success changes from trial to trial. **False**

(II) If *A* and *B* are independent events, then:

- **a.** P(A) = P(A|B). **True**
- **b.** $P(A \text{ and } B) = P(A) \cdot P(B)$. **True**
- **c.** *A* and *B* are mutually exclusive. **False**

(III) The chance that an event *A* happens:

- **a.** must be between 0% and 100%. **True**
- **b.** equals the number of times that *A* is expected to happen if the chance process is repeated many times. **False**
- **c.** is equal to 1-P(not A), where P(not A) represents the chance that A does **not** happen. **True**
- 2. 15 points 500 tickets are drawn with replacement from one of the boxes below.

Box $\mathbf{A} = \begin{bmatrix} -2 & 2 & 2 & -2 \end{bmatrix}$ Box $\mathbf{B} = \begin{bmatrix} 2 & -2 \end{bmatrix}$

You will win two dollars if a 2 is drawn, and you will lose a dollar if a -2 is drawn.

You prefer box A **False** box B **False** neither box (it doesn't matter) **True** Choose one of the above and **explain why!**

False True **3.** - **15 points** A fair die is rolled 15 times. A player will win \$10 whenever a 1 is rolled and will win \$20 whenever a 6 is rolled. Otherwise, they will lose \$7.

a. Create a box model for the above random variable.

Solution to a: 1 ticket \$10 1 ticket \$20 4 tickets -\$7.

b. How much does this player expect to win in total?

Solution to problem b: Average of Box = $\frac{10 + 20 - 7 - 7 - 7}{6} = \$\frac{1}{3}$. There are 15 trials so the expected value is: $15 \cdot \$\frac{1}{3} = \boxed{\$5}$.

4. - 23 points The winnings for a single game offered by the Golden Fortune casino have an expected value of -5 cent with an SD of one dollar (i.e., expect to lose 5 cent if you play this game). Joanne plays this game 10,000 times.

a. Compute Joanne's total net gain. It will be negative since she loses 5 cents on average per game.

Solution: $10,000 \cdot (-0.05) = -500$ dollars

b. What is the SE of Joanne's total winnings?

Solution: $\sqrt{10,000} \cdot 1 = 100$ dollars.

c. Use approximation with a normal curve to compute the probability that Joanne will lose at most 300.00 dollars. You may use the empirical rule.

Solution: -\$300 is 2 SEs above the average of -\$500 for the total winnings.

Empirical rule \Rightarrow P(net loss $\geq -\$300.00) \approx P(z \geq 2) \approx \boxed{2.5\%}$

5. - 20 points

A box contains two red marbles and four blue marbles. Six draws are made at random with replacement from the box. Find the probability for each of the following:

a. A red marble is never drawn. $|(4/6)^6 \approx 0.0878|$

b. A red marble is drawn less than two times.

 $P(\text{zero draws}) \approx 0.0878 \text{ (see part a)} P(\text{one draw}) = \approx 0.0878 \text{ (see part a)}; (2/6)(4/6)^5 {6 \choose 1} \approx 0.2634.$ Sum ≈ 0.3512

c. A blue marble is drawn exactly four times. $\left| (4/6)^4 (2/6)^2 {6 \choose 4} \approx 0.3292 \right|$

d. A blue marble is never drawn. $\left| (2/6)^6 \approx 0.0014 \right|$

e. A blue marble is drawn at least once. $1 - (2/6)^6 \approx 0.9986$

6. - 16 points Answer the following as precisely as possible.

a. In the following *A* and *B* are two events.

(i). State both the general multiplication rule and the general addition rule.

(ii). What is the multiplication rule in the special case that *A* and *B* are independent?

(iii). What is the addition rule in the special case that *A* and *B* are mutually exclusive?

Solution to a:

The general multiplication rule is: P(A and B) = P(A)P(B | A). If A and B are independent then the formula simplifies to P(A and B) = P(A)P(B).

The general addition rule is P(A or B) = P(A) + P(B) - P(A and B). If A and B are mutually exclusive the formula simplifies to P(A or B) = P(A) + P(B).

b. What is the binomial formula and what does it compute?

Solution to b:

 $\binom{n}{k} p^k (1-p)^{n-k}$ It should be used when asked the probability that an event will occur exactly k times out of n trials.

7. 20 points A die is rolled and you will win 4 dollars if the number you bet on comes up, you will lose 1 dollar if another number comes up. You play this game 36 times.

a. Compute the expected value of your total winnings.

Expected winnings per game are $4 \cdot \frac{1}{6} + (-1) \cdot \frac{5}{6} = -\frac{1}{6}$ dollars.

So for 36 games: $-36 \cdot \frac{1}{6} = -6.00$ dollars.

b. Compute the standard error of your total winnings.

SD per game is $|4 - (-1)| \cdot \sqrt{\frac{1}{6} \cdot \frac{5}{6}} \approx 5\sqrt{0.372678} \approx 1.863390$ dollars.

So the SE for 36 games is \sqrt{n} . SD of box = $\sqrt{36} \cdot 1.863390 \approx 11.18034$ dollars.

c. Interpretation: You expect a net gain after 36 games of $\boxed{-6}$ dollars, give or take $\boxed{11.18}$ dollars or so.

8. - 8 points Fill in the blanks.

a. When *A* and *B* are **dependent** events, the probability that both *A* and *B* occur is

 $P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$

b. If a fair coin is tossed 1000 times, the **Law of Averages** says that the number of heads will likely be close to 500, although it is unlikely that the number of heads will be exactly 500.

c. The binomial coefficient $\binom{n}{k}$ is **equal to** the binomial coefficient $\binom{n}{n-k}$. (Choose one of **less than, equal to,** or **greater than**.)

d. When drawing at random from a box of numbered tickets, the SE of the sum is the product of

 $\sqrt{\text{# of draws}}$ and **SD of the box**

9. - 15 points One ticket is drawn from Box A and one ticket is drawn from Box B:

Box A = $\begin{bmatrix} 1 & 2 & 3 & 6 & 8 \end{bmatrix}$ Box B = $\begin{bmatrix} 1 & 3 & 6 & 7 & 8 & 9 \end{bmatrix}$

Find the probability that

a. One or both of the numbers drawn are *even*.

Solution to a:

Let $U := \{ \text{draw from } a \text{ is even} \},$ $V := \{ \text{draw from } a \text{ is odd and draw from } b \text{ is even} \}.$ Then $P(U \text{ or } V) = P(U) + P(V) \text{ (addition rule)} = \frac{3}{5} + \frac{2}{5} \times \frac{2}{6} = \frac{18}{30} + \frac{4}{30} = \boxed{22/30 = 11/15}.$

b. The sum of the numbers drawn is 9. Hint: Write (on scratch) all possible combinations that give a sum = 9.

Solution to b: The following table gives the different possibilities

Box a	Box b	
1	8	
2	7	
3	6	
6	3	
8	1	

The probability is given by: $(\frac{1}{5} \times \frac{1}{6}) \times 5 = 5/30 = 1/6$

c. One of the numbers drawn is more than twice as big as the other number. Hint: Write (on scratch) down all possible combinations that give one draw more than twice as big as the other draw.

Solution to c: The following table gives the different possibilities

Box a	Box b
1	3, 6, 7, 8, 9
2	6,7,8,9
3	1,7,8,9
6	1
8	1,3

_

The probability is given by: $(\frac{1}{5} \times \frac{1}{6}) \times 16 = 16/30 = 8/15$