Math 147 - Elementary Statistics

Solutions for Spring 2020 Exam 02 Version A

This Exam is worth a total of 150 points.

Problem	1	2	3	4	5	6	7	8	9	Total
Points Earned										
Out of	18	15	15	23	20	16	20	8	15	150

1. - 18 points Answer each statement with True or False.
(I) The binomial formula:
a. can be used when drawing tickets from a box without replacement.

False
b. gives the chance that an event occurs exactly k times out of n trials. True
c. can be used when the probability of success changes from trial to trial. False
(II) If A and B are independent events, then:
a. $\quad P(A)=P(A \mid B)$. True
b. $\quad P(A$ and $B)=P(A) \cdot P(B)$. True
c. $\quad A$ and B are mutually exclusive. \square
(III) The chance that an event A happens:
a. must be between 0% and 100%. True
b. equals the number of times that A is expected to happen if the chance process is repeated many times. False
c. is equal to $1-P(\operatorname{not} A)$, where $P(\operatorname{not} A)$ represents the chance that A does not happen.

```
True
```

2. - 15 points 500 tickets are drawn with replacement from one of the boxes below.

You will win two dollars if a 2 is drawn, and you will lose a dollar if a -2 is drawn.
You prefer box A False box B False neither box (it doesn't matter) True
Choose one of the above and explain why!
3. - 15 points A fair die is rolled 15 times. A player will win $\$ 10$ whenever a 1 is rolled and will win $\$ 20$ whenever a 6 is rolled. Otherwise, they will lose $\$ 7$.
a. Create a box model for the above random variable.

Solution to a: 1 ticket $\$ 101$ ticket $\$ 204$ tickets $-\$ 7$.
b. How much does this player expect to win in total?

Solution to problem b: Average of $\mathrm{Box}=\frac{10+20-7-7-7-7}{6}=\$ \frac{1}{3}$.
There are 15 trials so the expected value is: $15 \cdot \$ \frac{1}{3}=\$ \mathbf{5}$.
4. - 23 points The winnings for a single game offered by the Golden Fortune casino have an expected value of -5 cent with an SD of one dollar (i.e., expect to lose 5 cent if you play this game). Joanne plays this game 10, 000 times.
a. Compute Joanne's total net gain. It will be negative since she loses 5 cents on average per game.

Solution: $10,000 \cdot(-0.05)=-500$ dollars
b. What is the SE of Joanne's total winnings?

Solution: $\sqrt{10,000} \cdot 1=100$ dollars.
c. Use approximation with a normal curve to compute the probability that Joanne will lose at most 300.00 dollars. You may use the empirical rule.

Solution: $-\$ 300$ is 2 SEs above the average of $-\$ 500$ for the total winnings.
Empirical rule $\Rightarrow \mathrm{P}($ net loss $\geqq-\$ 300.00) \approx P(z \geqq 2) \approx 2.5 \%$

5. - 20 points

A box contains two red marbles and four blue marbles. Six draws are made at random with replacement from the box. Find the probability for each of the following:
a. A red marble is never drawn. $(4 / 6)^{6} \approx 0.0878$
b. A red marble is drawn less than two times.
$P($ zero draws $) \approx 0.0878$ (see part a) $P($ one draw $)=\approx 0.0878$ (see part a); $(2 / 6)(4 / 6)^{5}\binom{6}{1} \approx 0.2634$.
Sum ≈ 0.3512
c. A blue marble is drawn exactly four times. $(4 / 6)^{4}(2 / 6)^{2}\binom{6}{4} \approx 0.3292$
d. A blue marble is never drawn. $(\mathbf{2} / 6)^{6} \approx 0.0014$
e. A blue marble is drawn at least once. $1-(2 / 6)^{6} \approx 0.9986$
6. - 16 points Answer the following as precisely as possible.
a. In the following A and B are two events.
(i). State both the general multiplication rule and the general addition rule.
(ii). What is the multiplication rule in the special case that A and B are independent?
(iii). What is the addition rule in the special case that A and B are mutually exclusive?

Solution to a:

The general multiplication rule is: $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} \mid \mathrm{A})$. If A and B are independent then the formula simplifies to $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$.

The general addition rule is $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$. If A and B are mutually exclusive the formula simplifies to $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$.
b. What is the binomial formula and what does it compute?

Solution to \mathbf{b} :

$\binom{n}{k} p^{k}(1-p)^{n-k} \quad$ It should be used when asked the probability that an event will occur exactly k times out of n trials.
7. - 20 points A die is rolled and you will win 4 dollars if the number you bet on comes up, you will lose 1 dollar if another number comes up. You play this game 36 times.
a. Compute the expected value of your total winnings.

Expected winnings per game are $4 \cdot \frac{1}{6}+(-1) \cdot \frac{5}{6}=-\frac{1}{6}$ dollars.
So for 36 games: $-36 \cdot \frac{1}{6}=-6.00$ dollars.
b. Compute the standard error of your total winnings.

SD per game is $|4-(-1)| \cdot \sqrt{\frac{1}{6} \cdot \frac{5}{6}} \approx 5 \sqrt{0.372678} \approx 1.863390$ dollars.
So the SE for 36 games is $\sqrt{n} \cdot$ SD of box $=\sqrt{36} \cdot 1.863390 \approx 11.18034$ dollars.
c. Interpretation: You expect a net gain after 36 games of -6 dollars, give or take 11.18 dollars or so.
8. - 8 points Fill in the blanks.
a. When A and B are dependent events, the probability that both A and B occur is

$$
P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)
$$

b. If a fair coin is tossed 1000 times, the Law of Averages. says that the number of heads will likely be close to 500 , although it is unlikely that the number of heads will be exactly 500 .
c. The binomial coefficient $\binom{n}{k}$ is equal to the binomial coefficient $\binom{n}{n-k}$. (Choose one of less than, equal to, or greater than.)
d. When drawing at random from a box of numbered tickets, the SE of the sum is the product of $\sqrt{\# \text { of draws }}$ and ${ }^{\text {SD of the box }}$
9. - 15 points One ticket is drawn from Box \mathbf{A} and one ticket is drawn from Box \mathbf{B} :

Find the probability that
a. One or both of the numbers drawn are even.

Solution to a:

Let $\mathrm{U}:=\{$ draw from a is even\},
$\mathrm{V}:=$ \{draw from a is odd and draw from b is even\}.
Then $\quad P(U$ or $V)=P(U)+P(V)($ addition rule $)=\frac{3}{5}+\frac{2}{5} \times \frac{2}{6}=\frac{18}{30}+\frac{4}{30}=\mathbf{2 2 / 3 0}=\mathbf{1 1} / \mathbf{1 5}$.
b. The sum of the numbers drawn is 9 . Hint: Write (on scratch) all possible combinations that give a sum $=9$.

Solution to \mathbf{b} : The following table gives the different possibilities

Box a	Box b
1	8
2	7
3	6
6	3
8	1

The probability is given by: $\left(\frac{1}{5} \times \frac{1}{6}\right) \times 5=5 / \mathbf{3 0}=\mathbf{1} / 6$
c. One of the numbers drawn is more than twice as big as the other number. Hint: Write (on scratch) down all possible combinations that give one draw more than twice as big as the other draw.

Solution to c: The following table gives the different possibilities

Box a	Box b
1	$3,6,7,8,9$
2	$6,7,8,9$
3	$1,7,8,9$
6	1
8	1,3

The probability is given by: $\left(\frac{1}{5} \times \frac{1}{6}\right) \times 16=16 / 30=8 / \mathbf{1 5}$

