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Math 148 - Lecture Notes: Selected Topics

Version: Draft 01

This write-up contains notes about selected topics given for Math 148 in Fall 2015

1 Lecture Notes for Math 148 - Fall 2015

1.1 Math 148 - Probability

1.1.1 Conditional probabilities

Frequencies and product rule for conditional probabilities

(this was printed) and projected with the overhead projector).

Conditional probabilities P (B|A) = P (BgivenA) as restricting the context from the overall sample
space to A only: We throw away whatever is in that sample space but does not belong to A. This
means that only B and A of the event of interest B survives within that new sample space A. We
abbreviate

Symbol Description
#(SSpc) all outcomes for the entire sample space

#(A) all outcomes for A
#(B) all outcomes for B

#(A and B) all possible outcomes for both A and B

We obtain, because we interpret the probability of an event as its relative frequency
#(favorable outcomes)

#(possible outcomes)
,
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the following:

P (A) =
#(outcomes in A)

#(outcomes in sample space)
=

#(A)

#(SSpc)

P (B) =
#(outcomes in B)

#(outcomes in sample space)
=

#(B)

#(SSpc)

P (A and B) =
#(outcomes in both A and B)

#(outcomes in sample space)
=

#(A and B)

#(SSpc)

P (B|A) = P (B given A) =
#(outcomes in both A and B)

#(outcomes in new sample space A)
=

#(A and B)

#(A)

Why that last equation? Answer: The denominator changes from #(SSpc) to #(A) because we re-
stricted our context from the overall sample space to A and the numerator changes from #(B) to #(A
and B) because we removed the outcomes that are not part of A, i.e., we restricted the favorable
outcomes of B to those that also belong to A, i.e., we only consider AandB as favorable outcomes.

What now is P (A) · P (B|A)? Answer:

P (A) · P (B|A) =
#(A)

#(SSpc)
·

#(A and B)

#(A)
=

#(A and B)

#(SSpc)
= P (A and B)

Again: P (A and B) = P (A) · P (B|A)

2 Math 148 - Notation used in lecture but not in the FPP text

2.1 Notation - Lists

Given is a list of items x1, x2, x3, . . . , xn. We often write ~x as an abbreviation for such a list 1 , i.e.,

~x = (x1, x2, x3, . . . , xn)(2.1)

It is clear that the last index, here n, denotes for such a list its size or length There is nothing sacred
about the letters x and n. You have seen when we talked about regression that two separate lists
~x = (x1, x2, x3, . . . , xn) and ~y = (y1, y2, y3, . . . , yn) of the same length were needed to describe the
contents of a scatter diagram. We will also have occasion to look at different lists of different length,
so you may see in lecture two separate lists

~X = (X1, X2, X3, . . . , Xn) and ~b = (b1, b2, b3, . . . , bk)

to describe a chance process ~X of n independent observations X1, X2, . . . , Xn each of which will
have one of the possible outcomes b1, b2, . . . , bk (the items listed in the “box” 2 ~b) with equal proba-
bility 1/k.

1 That’s preferable to writing x because we want to use x only in phrases like “let x be one of the items in the list ~x”
or as a subscript to an object that is associated with that list (example: SDx, the standard deviation of the list - see further
down in this section).

2 The notation for chance processes and box models will be described more in detail later in this document.
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Examples for lists:

a. If “H” stands for “Heads” and “T” stands for “Tails” then a possible list that describes the out-
comes of 5 flips of a coin would be ~t = (H,H, T,H, T ): t1 = H , t2 = H , t3 = T , t4 = H , t5 = T . We
chose “t” for “toss” as in toss of a coin. In this example the length of the list ~t is 5.

Lists of such qualitative, non-numeric, variables are very limited in terms of the computations that
can be done with them.

b. Let us rewrite this list as follows: write 1 instead of H and 0 instead of T .

Now we get the list ~x = (1, 1, 0, 1, 0): x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 0.

For such a list we can compute the sum x1 + x2 + · · ·+ xn which is 1 + 1 + 0 + 1 + 0 = 3 for the list
~x and gives use the number of heads in the original list ~t of heads and tails.

c. If the number of heads is the most important item of interest then we could do the following:
create a new list which directly lists for each turn how many heads were obtained until this point
in time: We create a new list (“s” for “sum”)

~s = (s1, s2, s3 . . . , sn) where
s1 = x1,

s2 = x1 + x2,

s3 = x1 + x2 + s3,

· · ·
sn = x1 + x2 + s3 + · · ·+ sn.

In the example above which was based on five coin tosses: s1 = 1, s2 = 1+1 = 2, s3 = 1+1+0 = 2,
s4 = 1 + 1 + 0 + 1 = 3, s5 = 1 + 1 + 0 + 1 + 0 = 3.

2.2 Notation - “Σ” for Summation

Here is a refresher for the use of “Σ” 3 as a compact means of describing sums of numeric lists.

In section 2.1 on lists we encountered a numbers list

~x = (1, 1, 0, 1, 0) : x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 0

and its corresponding list of sums

~s = (s1, s2, s3, s4, s5) where
s1 = x1 = 1,

s2 = x1 + x2 = 2,

s3 = x1 + x2 + s3 = 2,

s4 = x1 + x2 + s3 + s4 = 3,

s5 = x1 + x2 + s3 + s4 + s5 = 3.

3 For additional background check your highschool math books or tutorials on the internet.
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Summation occurs so frequently in statistics that we want to have a shorter way to deal with a sum
of 3 or 300 or any k numbers x1, x2, . . . , xk. We write

k∑
j=1

xj as a short for x1 + x2 + x3 + · · ·+ xk(2.2)

We call j the index variable and k the to-variable or the end-variable of the summation. Note that
if a variable such as k is used to denote the last item to be included in the sum then it will usually
but not always(!) be the size of the list.

Let us use this new notation the example above:

s1 = x1 =
1∑

j=1

xj = 1,

s2 = x1 + x2 =

2∑
j=1

xj = 2,

s3 = x1 + x2 + s3 =
3∑

j=1

xj = 2,

s4 = x1 + x2 + s3 + s4 =

4∑
j=1

xj = 3,

.s5 = x1 + x2 + s3 + s4 + s5 =
5∑

j=1

xj = 3.

Occasionally there are reasons to choose a start index different from 1. For example, we may be
interested to sum up the items starting at the 10th turn and ending the 25th turn. We write

25∑
j=10

xj as a short for x10 + x11 + x12 + · · ·+ x25.

Sometimes a list may have “start time” 0: ~x = (x0, x1, x2, . . . , xn). We then write
n∑

j=0

xj for the sum

of all its members.

The role of the index variable. In the above the name of the index variable j is irrelevant. You
may choose any letter you want as long as it does not match the name of either start variable or end
variable. The following all mean the same thing:

8∑
j=4

xj =
8∑

i=4

xi =
8∑

z=4

xz =
8∑

n=4

xn = x4 + x5 + x6 + x7 + x8

and
n∑

j=1

xj =
n∑

i=1

xi =
n∑

z=1

xz,
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but it is illegal to write
n∑

n=1

xn because you may not mix up the index variable n with the end

variable n in this summation expression.

Lazy ways to write the Σ notation: If there is absolutely no confusion about start index and end
index (practically because start index = first index of the list (usually 1) and end index = last index
of the list) then these may be dropped and the following each mean the same:

For a list ~x =(xa, xa+1, xa+2, . . . xn−1, xn−1),
∑

xj :=
∑
j

xj :=

n∑
j=a

xj .(2.3)

2.3 Basic notation for lists

Given a numeric list ~x = (x1, x2, . . . , xn) we write

x̄ =
1

n

n∑
j=1

xj =
x1 + x2 + · · ·+ xn

n

for its mean or average and

SDx =

√√√√ 1

n

n∑
j=1

(xj − x̄)2

(the root-mean-square of the differences xj − x̄) for the for its standard deviation.

Given a numeric list ~x = (x1, x2, . . . , xn), we write

~̃x = (x̃1, x̃2, . . . , x̃n) wherex̃j =
xj − x̄

SDx
(2.4)

for the corresponding list of standard units.

2.4 Notation for regression

When doing regression for a scatter diagram, note that each observation is not a single number xj
but rather a pair of numbers (xj , yj). There are two ways to place the arrows when writing such a
scatter diagram as a list:

−−−→
(x, y) := (~x, ~y) :=

(
(x1, y1), (x2, y2), . . . , (xn, yn)

)
The five point summary. for such a scatter diagram is boxedx̄, SDx, ȳ, SDy, r where we compute
the correlation coefficient r as follows:

a. Build associated lists ~̃x, ~̃y of standard units:

x̃j :=
xj − x̄

SDx
, ỹj :=

yj − ȳ

SDy
.
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b. Create a new list ~p from the products pj := x̃j · ỹj .

c. Take the average of that list:

r := rx,y := p̄ :=
p1 + p2 + · · ·+ pn

n
=

1

n

n∑
j=1

(xj − x̄

SDx
·
yj − ȳ

SDy

)
.

SD line and regression line for a scatter diagram

Both lines go through the point of averages. with coordinates (x̄, ȳ).

The SD line has slope m =
SDy

SDx
if r > 0,(2.5)

m = −
SDy

SDx
if r < 0,(2.6)

The regression line has slope m = r ·
SDy

SDx
always.(2.7)

The regression line ŷ = mx + b (the slope m was just given above) has as its y-values the best
possible estimates for the average of those y-values of the scatter diagram (~x, ~y) only for which we
freeze the x-value to, say, observation j: x = xj . In other words, the y-value ŷ on the regression line
corresponding to the x -value xj is the best estimate for ȳ|x = xj , an expression which we read as
“the mean ȳ of the y-values under the condition that the x-values (there could be more than one)
are restricted to xj” or shorter, as the conditional mean ȳ of y given that x = xj .

Not on any test: The following on total, explained and unexplained variation.

Total variation: vartot =
∑
j

(yj − ȳ)2. Note that vartot/n = SDy.

Explained variation: varexpl =
∑
j

(ŷj − ȳ)2.

unexplained variation: varunexpl =
∑
j

(yj − ŷj)
2.

vartot = varexpl + varunexpl

What follows might be on a test:

sest :=

√√√√ 1

n

∑
j

(yj − ŷj)2 =
√

1− r2 · SDy = r.m.s. error of the regression line(2.8)

= standard error of the estimate(2.9)
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2.5 Chance processes and box models

A box model is a probability model that behaves like drawing at random with replacement from a
box with a finite list of tickets~b = (b1, b2, . . . , bk). “At random” means that each ticket has the same
chance of being drawn and “with replacement” guarantees that the situation is the same before each
draw and that the result of the nth draw is independent of all previous and subsequent draws.

Examples:

a. Box for repeatedly tossing a coin: ~b = (0, 1)

b. Box for repeatedly rolling a die: ~b = (1, 2, 3, 4, 5, 6)

c. Box for counting the occurrence of either a 2 or a 5 when repeatedly rolling a die: ~b = (0, 1, 0, 0, 1, 0)

d. Box for counting the net winnings when playing repeatedly Roulette and each time betting 1 on
a specific number, say 13: obtain 35 if that number comes up and lose the dollar if it does not. The
box has 38 tickets: on for each slot of the Roulette wheel: ~b = (b1, b2, . . . b38) where 37 of the bj have
a value of−1 (losing a dollar) and only one has a value of +35. It does not matter whether #1 or #38
or a ticket inbetween is the winning ticket because remember: the tickets are well shuffled so that
each one has the same chance of being drawn.

A box~b = (b1, b2, . . . , bk) is just a list of data.

A chance process or random process is a finite or infinite list (“sequence”) of observations which
are subject to chance (they are not deterministic and the outcomes may vary if you do the same
sequence of actions at another time).

Examples:
a. you toss a coin repeatedly and observe Heads or Tails after each toss.
b. After each such toss (example a) you note how often Heads came up until now.
c. You play Roulette repeatedly, always betting 1 on Red and keep track of your net winnings

when Red lets you win a dollar and you otherwise lose a dollar.
d. you randomly select people at an airport and write down their weight.

If you set out tomorrow to do the same set of actions again then it is most unlikely that you end up
with exactly the same list of data as you did today: Today your first five tosses may be ( H, H, T,
H, T ), tomorrow you may obtain ( H, T, T, T, H) so that you also get a different value in (b) after
the fifth toss. Today you may have had a net gain of 4 after 100 games, tomorrow you may loose 9
instead.

We write capital letters such as ~X = (X1, X2, . . . , ), ~Y = (Y1, Y2, . . . , ), ~S = (S1, S2, . . . , ), to
describe a chance process.

Do not confuse the chance process ~X = (X1, X2, . . . , ) with the specific list of outcomes (data)
~x = (x1, x2, . . . , xn) you obtain if you let this process happen now and which probably will be
quite different if that process happens again tomorrow.

Example c (Roulette) above: do not confuse the process ~S = (S1, S2, . . . , ) in which Sj is the
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difference between dollars won and dollars lost when betting j times a dollar on Red with the list
of data ~s = (s1, s2, . . . , sn) that you obtain when actually play Roulette today n times and you may
get, e.g., s1 = net gain after first game S1 = 1 (Red came up by chance), s2 = net gain after second
game S2 = 2 (Red came up again by chance), sn = net gain after nth game Sn = -5 (after the last game
in which you particpated today).

In other words, a chance process is a described by a set of rules that describe how a concrete list
of data will be obtained by invoking or running that chance process. You might say that it is a
potential list of data which will become an actual list of data every time it is run.

Important assumption:
For any chance process ~X = (X1, X2, . . . , ) we assume that it behaves as if there was a box
model: a box ~b = (b1, b2, . . . , bk) of k tickets with value bi on ticket i (i = 1, 2, . . . , k), each of
which has the same chance 1/k of being drawn and that the possible outcomes of anyone of the
Xj (j = 1, 2, . . . ) is one of those ticket values.

Under this assumption we may expect that any one of the chance process outcomes X1, X2 may be
expected to equal, on average, the box average b̄. and that the expected value of the corresponding
summation process ~S = (S1, S2, . . . , ) (Sn = X1 + X2 + · · ·+ Xn) will be

E(Sn) = expected value of Sn = n · b̄ = # of draws × average of box(2.10)

There will also be a spread of the sum Sn =
∑n

j=1Xj about its expected value E(Sn), called the
standard error SES which can becomputed with help of the

square root law:

SE(S) = standard error of Sn =
√
n · SE(b) =

√
# of draws × SD of box(2.11)

TO BE CONTINUED .....................
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