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1 Items discussed in lecture but not in the FPP text

1.1 Lists

Given is a list of items x1, x2, x3, . . . , xn. We often write ~x as an abbreviation for such a list 1 , i.e.,

~x = (x1, x2, x3, . . . , xn)(1.1)

It is clear that the last index, here n, denotes for such a list its size or length There is nothing sacred
about the letters x and n. You have seen when we talked about regression that two separate lists
~x = (x1, x2, x3, . . . , xn) and ~y = (y1, y2, y3, . . . , yn) of the same length were needed to describe the
contents of a scatter diagram. We will also have occasion to look at different lists of different length,
so you may see in lecture two separate lists

~X = (X1, X2, X3, . . . , Xn) and ~b = (b1, b2, b3, . . . , bk)

to describe a chance process ~X of n independent observations X1, X2, . . . , Xn each of which will
have one of the possible outcomes b1, b2, . . . , bk (the items listed in the “box” 2 ~b) with equal proba-
bility 1/k.

Examples for lists:

a. If “H” stands for “Heads” and “T” stands for “Tails” then a possible list that describes the out-
comes of 5 flips of a coin would be ~t = (H,H, T,H, T ): t1 = H , t2 = H , t3 = T , t4 = H , t5 = T . We
chose “t” for “toss” as in toss of a coin. In this example the length of the list ~t is 5.

Lists of such qualitative, non-numeric, variables are very limited in terms of the computations that
can be done with them.

1 That’s preferable to writing x because we want to use x only in phrases like “let x be one of the items in the list ~x”
or as a subscript to an object that is associated with that list (example: SDx, the standard deviation of the list - see further
down in this section).

2 The notation for chance processes and box models will be described more in detail later in this document.
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b. Let us rewrite this list as follows: write 1 instead of H and 0 instead of T .

Now we get the list ~x = (1, 1, 0, 1, 0): x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 0.

For such a list we can compute the sum x1 + x2 + · · ·+ xn which is 1 + 1 + 0 + 1 + 0 = 3 for the list
~x and gives use the number of heads in the original list ~t of heads and tails.

c. If the number of heads is the most important item of interest then we could do the following:
create a new list which directly lists for each turn how many heads were obtained until this point
in time: We create a new list (“s” for “sum”)

~s = (s1, s2, s3 . . . , sn) where
s1 = x1,

s2 = x1 + x2,

s3 = x1 + x2 + s3,

· · ·
sn = x1 + x2 + s3 + · · ·+ sn.

In the example above which was based on five coin tosses: s1 = 1, s2 = 1+1 = 2, s3 = 1+1+0 = 2,
s4 = 1 + 1 + 0 + 1 = 3, s5 = 1 + 1 + 0 + 1 + 0 = 3.

1.2 “Σ” for Summation

Here is a refresher for the use of “Σ” 3 as a compact means of describing sums of numeric lists.

In section 1.1 on lists we encountered a numbers list

~x = (1, 1, 0, 1, 0) : x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 0

and its corresponding list of sums

~s = (s1, s2, s3, s4, s5) where
s1 = x1 = 1,

s2 = x1 + x2 = 2,

s3 = x1 + x2 + s3 = 2,

s4 = x1 + x2 + s3 + s4 = 3,

s5 = x1 + x2 + s3 + s4 + s5 = 3.

Summation occurs so frequently in statistics that we want to have a shorter way to deal with a sum
of 3 or 300 or any k numbers x1, x2, . . . , xk. We write

k∑
j=1

xj as a short for x1 + x2 + x3 + · · ·+ xk(1.2)

3 For additional background check your highschool math books or tutorials on the internet.
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We call j the index variable and k the to-variable or the end-variable of the summation. Note that
if a variable such as k is used to denote the last item to be included in the sum then it will usually
but not always(!) be the size of the list.

Let us use this new notation the example above:

s1 = x1 =
1∑

j=1

xj = 1,

s2 = x1 + x2 =
2∑

j=1

xj = 2,

s3 = x1 + x2 + s3 =

3∑
j=1

xj = 2,

s4 = x1 + x2 + s3 + s4 =
4∑

j=1

xj = 3,

.s5 = x1 + x2 + s3 + s4 + s5 =

5∑
j=1

xj = 3.

Occasionally there are reasons to choose a start index different from 1. For example, we may be
interested to sum up the items starting at the 10th turn and ending the 25th turn. We write

25∑
j=10

xj as a short for x10 + x11 + x12 + · · ·+ x25.

Sometimes a list may have “start time” 0: ~x = (x0, x1, x2, . . . , xn). We then write
n∑

j=0

xj for the sum

of all its members.

The role of the index variable. In the above the name of the index variable j is irrelevant. You
may choose any letter you want as long as it does not match the name of either start variable or end
variable. The following all mean the same thing:

8∑
j=4

xj =

8∑
i=4

xi =
8∑

z=4

xz =
8∑

n=4

xn = x4 + x5 + x6 + x7 + x8

and
n∑

j=1

xj =

n∑
i=1

xi =

n∑
z=1

xz,

but it is illegal to write
n∑

n=1

xn because you may not mix up the index variable n with the end

variable n in this summation expression.
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Lazy ways to write the Σ notation: If there is absolutely no confusion about start index and end
index (practically because start index = first index of the list (usually 1) and end index = last index
of the list) then these may be dropped and the following each mean the same:

For a list ~x =(xa, xa+1, xa+2, . . . xn−1, xn−1),
∑

xj :=
∑
j

xj :=

n∑
j=a

xj .(1.3)
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2 Math 148 - Various topics

Various notes on all kind of subjects.

2.1 Function notation

Remark 2.1 (Functions: from the concrete to the abstract).

a. y = f(x) = 3x2 − 5: assigns the argument or independent variable x to its function value
f(x) “ 7→” means “assigns to”, so in short: x 7→ 3x2 − 5, also x 7→ f(x)

b. x and y are just dummy variables. It does not mean what they are called. We could have
written x = f(t) = 3t2 − 5 instead! Short form: t 7→ 3t2 − 5, also t 7→ f(t)

c. Because we do not deal with some function in the abstract but the concrete one which
does the assignment x 7→ 3x2−5, it does not matter whether we write y = f(x) = 3x2−5
or y = H(x) = 3x2 − 5 or v = H(u) = 3u2 − 5. It’s still one and the same function which
squares its argument, multiplies that by 3 and then subtracts 5.

d. Functions need not necessarily have numbers for arguments and or function values but
we might have “vectors” (finite lists of numbers) instead: The function

(x1, x2, x3) 7→ F (x1, x2, x3) :=
(

(x1 + x2 + x3)/3,
√

x21 + x22 + x23

)
throws any triplet of numbers (a 3–dimensional vector) into a pair of numbers (a 2–
dimensional vector).

For example, F (1,−2, 3) =
(

(1− 2 + 3)/3,
√

12 + (−2)2 + 32
)

= (2/3,
√

14).

e. Now comes a big jump in abstraction: Sometimes we neither know nor care about the
nature of the arguments x and the pool or source from which they are drawn. In math
we do not talk about “pools”. Instead we talk about sets. A set is for simply a collection of
stuff. Don’t try to overcomplicate that. For example, we talk about the set of all numbers
or that of all 3–dimensional vectors or the set ]3.8, 17[ of all numbers between 3.8 and
17, endpoints excluded or the set [3.8, 17] of all numbers between 3.8 and 17, endpoints
included.

f. Particularly popular for the set of all arguments: Ω (uppercase Omega). Particularly
popular for the arguments instead: ω instead of x or t. So now we talk about a function
ω 7→ y := f(ω) with arguments being taken from Ω.

g. Rather than using “f” for the function name and y for the name of the function value you
will often see “X” or “Y ” or “S” for the function name and x or y or s for the name of the
function value. In other words we often deal with

ω 7→ x = X(ω), ω 7→ y = Y (ω), ω 7→ s = S(ω), . . .

.
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h. What will that be good for? We will think of X something which describes an outcome x
which depends on a randomly happening phenomenon ω. For example X might mean
rolling a die. The outcome x as the result of rolling the die will be one of the numbers
1, 2, 3, 4, 5, 6. We don’t know beforehand which one it will be because that’s happening
by chance which is represented by ω.
Think of it this way if you like: Some supreme being picks some ω from the set Ω. If it
happens to be “this” ω1 then the outcome will be x1 = X(ω1) which happens to be 5. If
“that” ω2 had been picked then the outcome will be x2 = X(ω2). which happens to be 1
instead. We often don’t know and don’t need to know for the questions that interest us
anything more specific about the nature of Ω and X , and how X assigns ω to some value
between 1 and 6.

2.2 FPP ch.1,2: experimental design and confounding

Definition 2.1 (Design of Experiments). 4

Design of experiments, also referred to as experimental Design is the planning process that needs
to go into any experiment, survey or study in order for the results to be valid. The medical and social
sciences tend to use the term “Experimental Design” while engineering, industrial and computer
sciences favor the term “Design of experiments.”

Design of experiments involves:

a. The systematic collection of data
b. A focus on the design itself, rather than the results
c. Planning changes to independent (input) variables and the effect on dependent variables

or response variables
d. Ensuring results are valid, easily interpreted, and definitive.

The most important principles are:

a. Randomization: the selection of data by a completely random method, like simple ran-
dom sampling. Randomization significantly eliminates bias.

b. Replication: the experiment must be repeatable by other researchers.

Design of Experiments: Categories

a. Cross Sectional Study:
b. Longitudinal study:
c. Observational study:

Variables in Design of Experiments

4 Source: http://www.statisticshowto.com/design-of-experiments/.
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a. Confounding variables
b. Control variables
c. Dependent variables
d. Explanatory variables
e. Outcome variables

Remark 2.2 (Advantages and disadvantages of randomized Controlled experiments). 5

Advantages

a. Random allocation can cancel out population bias; it ensures that any other possible
causes for the experimental results are split equally between groups.

b. Blinding is easy to include in this type of experiment.
c. Results from the experiment can be analyzed with statistical tests and used to infer their

validity for the entire population.

Disadvantages

a. Generally more expensive and more time consuming than other methods.
b. Very large sample sizes (over 5,000 participants) are often needed.
c. Random controlled trials cannot uncover causation/risk factors. For example, ethical

concerns would prevent a randomized controlled trial investigating the risk factors for
smoking.

d. Some programs, for example cancer screening, are unsuited for random allocation of
participants (again, due to ethical concerns).

e. Volunteer bias can be an issue.

Example 2.1 (Randomized controlled experiment). 6

To determine how a new type of short wave UVA-blocking sunscreen affects the general health
of skin in comparison to a regular long wave UVA-blocking sunscreen, 40 trial participants were
randomly separated into equal groups of 20: an experimental group and a control group. All par-
ticipants’ skin health was then initially evaluated. The experimental group wore the short wave
UVA-blocking sunscreen daily, and the control group wore the long wave UVA-blocking sunscreen
daily.

After one year, the general health of the skin was measured in both groups and statistically ana-
lyzed. In the control group, wearing long wave UVA-blocking sunscreen daily led to improvements
in general skin health for 60% of the participants. In the experimental group, wearing short wave
UVA-blocking sunscreen daily led to improvements in general skin health for 75% of the partici-
pants.

Some questions to be answered later in this course:

5 Source: http://www.statisticshowto.com/experimental-design/#RandomC.
6 Source: https://himmelfarb.gwu.edu/tutorials/studydesign101/rcts.html.
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a. Is the increase in improvement rates from 60% to 75% significant enough to make it prac-
tically unlikely that it resulted from the “luck of the draw” as far as the selection of the
participants and/or their allocation to treatment or control was concerned?

b. Can we infer the answers to question a from the information given or do we need to
know more about the data?

Definition 2.2 (Confounding variables). 7

In an experiment, the independent variable typically has an effect on your dependent variable. For
example, if you are researching whether lack of exercise leads to weight gain, lack of exercise is
your independent variable and weight gain is your dependent variable. A confounding variable
is any other variable that also has an effect on your dependent variable. Confounding variables are
like extra independent variables that are having a hidden effect on your dependent variables.

Another way to express this is that confounding variables cause the so-called third variable prob-
lem which refers to the fact that any time we observe a relationship among two variables, there’s
always the possibility that some third variable which we don’t know about is responsible for (“con-
founding”) the relationship.

Confounding variables can cause major problems:

a. They introduce bias.
b. They damage the validity of the results gained in the experiment because they indicate a

relationship between two variables which does not really exist.

Example 2.2 (Confounding variable). 8

You test 200 volunteers (100 men and 100 women). You find that lack of exercise leads to weight
gain. Could there be problems with your design?

One problem with your experiment is that is lacks any control variables. For example, the use of
placebos, or random assignment to groups. So you really can’t say for sure whether lack of exercise
leads to weight gain. One confounding variable is how much people eat. It’s also possible that men
eat more than women; this could also make sex a confounding variable. Nothing was mentioned
about starting weight, occupation or age either. A poor study design like this could lead to bias.
For example, if all of the women in the study were middle-aged, and all of the men were aged 16,
age would have a direct effect on weight gain. That makes age a confounding variable.

Example 2.3 (Confounding variable). 9

A research group designs a a study to determine if heavy drinkers die at a younger age.

They gather the data. Their results, and a battery of statistical tests, indeed show that people who
drink excessively are likely to die younger. Unfortunately, when the researchers do a crosscheck
with their peers, the results are ripped apart, because their peers live just as long. Could there be
another factor, not measured, that influences both drinking and living age?

7 Source: http://www.statisticshowto.com/design-of-experiments/confounding-variable/. This link contains a very
good VIDEO!

8 Source: http://www.statisticshowto.com/design-of-experiments/confounding-variable/.
9 Source: https://explorable.com/confounding-variables.
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The weakness in the experimental design was that it did not take into account the confounding
variables, and did not try to eliminate or control any other factors. For example, it is quite possible
that the heaviest drinkers hailed from a different background or social group. Heavy drinkers may
be more likely to smoke, or eat junk food, all of which could be factors in reducing longevity.

Example 2.4 (Confounding variable). 10

Michael conducts an experiment to test the effectiveness of a pain reliever. He gives the pain reliever
to ten people in the experiment and herbal tea to another ten people. Unfortunately, all of the
people in the study, the ten that took the pain reliever and the ten that took the herbal tea, report
improvements in their headaches.

The results could be due to a confounding variable: Michael does not have a control group. If he
had a group that took nothing for the headaches, he could make a more accurate analysis. It is
possible that the herbal tea has healing properties for pain. This is a confounding variable which
messes up the reliability of the results as far as answering the question whether or not the pain
relievers are effective is concerned.

Example 2.5 (Confounding variables - MURDER AND ICE CREAM). 11

It is known that throughout the year, murder rates and ice cream sales are highly positively corre-
lated. That is, as murder rates rise, so does the sale of ice cream. There are three possible explana-
tions for this kind of relationship:

a. Murders cause people to purchase ice cream. Perhaps when one is murdered, they are
resurrected as zombies who primarily feed on ice cream.

b. Purchasing ice cream causes people to murder or get murdered. Perhaps when one eats
ice cream, those without ice cream become jealous and murder those with ice cream.

c. There is a confounding variable which causes the increase in BOTH ice cream sales AND
murder rates. For instance, the weather. When it’s cold and wintery, people stay at home
rather than go outside to murder people. They also probably don’t eat a lot of ice cream.
On the other hand, when it’s hot and summery, people spend more time outside interact-
ing with each other, and hence are more likely to get into the kinds of situations that lead
to murder. They are also probably buying ice cream.

In the above example, the weather is a variable that confounds the relationship between ice cream
sales and murder rates.

A CONCRETE EXAMPLE WITH A PRETTY PICTURE

A sadly confounded experimental design

If you still don’t get it, I’ve got another example and a pretty picture to go with it. Imagine you’d
like to examine the relationship between the force you apply to a ball and the distance the ball
travels. Naturally, you predict that the more force you apply, the further the ball will travel. You
create an experiment with two conditions. Now you should be eyeballing that pretty picture I told
you about. In Condition 1, you apply a 10 lb force to the ball and measure the distance traveled. In
Condition 2, you apply a 5 lb force to the ball and measure the distance traveled. After you run your

10 Source: https://explorable.com/confounding-variables.
11 Source: http://www.psychologyinaction.org/2011/10/30/what-is-a-confounding-variable/.
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experiment, you observe that the ball travels further in Condition 2 than it does in Condition 1. In
other words, you find that the less force you apply, the further the ball travels. Should you conclude
that Isaac Newton was wrong? No. As should be pretty clear from that pretty picture, there’s a clear
confounding variable in this experimental design: the angle of the slope. Given the presence of this
confound, we have no way of knowing which variable – force or angle – is responsible for the
change in the distance the ball travels.

This illustrates why it’s so important to always be on the lookout for confounds. Confounds can
make us reach conclusions that are wrong; confounds can make us look stupid. Or, to use slightly
more technical language: confounding variable = BAD.

Remark 2.3 (Correlation and causation). 12

Confounding variables are closely related to the problem of correlation and causation.

For example, a scientist performs statistical tests, sees a correlation and incorrectly announces that
there is a causal link between two variables. Constant monitoring, before, during and after an
experiment, is the only way to ensure that any confounding variables are eliminated.

12 Source: https://explorable.com/confounding-variables.

11

https://explorable.com/confounding-variables


References

12



List of Symbols

{A - complement, 2∑k
j=1 xj - summation, 4

~x - list of items, 2

13



Index

confounding variable, 9

design of experiments, 7

experimental Design, 7

list
length, 2
size, 2

longitudinal study, 7

observational study, 7

randomization, 7
replication, 7

set, 6
sross sectional study, 7
summation

end-variable, 4
index variable, 4
to-variable, 4

third variable problem, 9

14


	Items discussed in lecture but not in the FPP text
	Lists
	``'' for Summation

	Math 148 - Various topics
	Function notation
	FPP ch.1,2: experimental design and confounding

	References
	List of Symbols
	Index

