## Math 148 - Elementary Bio Stats

## Solutions for Spring 2016 Lecture Quiz 02

## This quiz is worth a total of 8 points.

1. The formula for the r.m.s. error of the regression line is

$$
s_{e s t}:=\sqrt{\frac{1}{n} \sum_{j}\left(y_{j}-\hat{y}_{j}\right)^{2}}=\sqrt{1-r^{2}} \cdot \mathrm{SD}_{y} .
$$

The factor $\sqrt{1-r^{2}}$ is between 0 and 1 . This means that $s_{\text {est }}$ will never exceed $S D_{y}$. Explain why.

Hint: Interpret both $S D_{y}$ and $s_{\text {est }}$ as spreads about estimates for $y$.

## Solution to problem 1:

$S D_{y}$ is the spread of the scatterdiagram about the horizontal line $y=\bar{y}$ whose (constant) $y$-value $\bar{y}$ is the best possible estimate for $y$ if you use no information about $x$.
$s_{\text {est }}$ is the spread of the scatterdiagram about the regression line whose $y$-values are, for $x \approx x_{0}$, the best possible estimate $\left.\bar{y}\right|_{x=x_{0}}$ for $y$ if the additional information that $x=x_{0}$ is used.

The scatterdiagram is clustered more tightly about the better estimates $\left.\bar{y}\right|_{x=x_{0}}$ than about the "one shoe fits all" estimate $\bar{y}$ for its $y$-values.

