Math 148 - Formula Sheet 01

For random variables X, Y and a constant a we have

$$
\begin{aligned}
\mu & =E(X)=\sum_{x} x P(X=x) \\
\sigma^{2} & =\operatorname{Var}(X)=\sum_{x}(x-E(X))^{2} P(X=X) \\
\sigma & =\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)} \\
E(X \pm Y) & =E(X) \pm E(Y) \\
E(a X) & =a E(X) \\
\operatorname{Var}(X \pm Y) & =\operatorname{Var}(X)+\operatorname{Var}(Y) \quad \text { if } X, Y \text { are independent }
\end{aligned}
$$

Sampling distribution for the mean of iid (independendent and identically distributed) random variables $X_{1}, X_{2}, X_{3}, \ldots$ with mean $E\left(X_{j}\right)=\mu$ and SD σ.

$$
\begin{aligned}
E(\bar{X}) & =E\left(X_{1}\right)=E\left(X_{j}\right)=\mu \\
\operatorname{Var}(\bar{X}) & =\frac{\operatorname{Var}\left(X_{1}\right)}{n}=\frac{\operatorname{Var}\left(X_{j}\right)}{n}=\frac{\sigma^{2}}{n} \\
\mathrm{SD}(\bar{X}) & =\frac{\mathrm{SD}\left(X_{1}\right)}{\sqrt{n}}=\frac{\mathrm{SD}\left(X_{j}\right)}{\sqrt{n}}=\frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

Sampling distribution formulas for proportions of iid Bernoulli trials $X_{1}, X_{2}, X_{3}, \ldots$ with success probability (= population proportion) $p, q=1-p$, and sample proportion \hat{p} : If we encode success $=1$ and failure $=0$ then

$$
\mu=E\left(X_{1}\right)=E\left(X_{j}\right)=p \text { and } \sigma=\mathrm{SD}\left(X_{1}\right)=\mathrm{SD}\left(X_{j}\right)=\sqrt{p q}
$$

Sampling distribution formulas:

$$
\begin{aligned}
E(\hat{p}) & =E\left(X_{1}\right)=E\left(X_{j}\right)=p \\
\operatorname{Var}(\hat{p}) & =\frac{\operatorname{Var}\left(X_{1}\right)}{n}=\frac{\operatorname{Var}\left(X_{j}\right)}{n}=\frac{\sigma^{2}}{n}=\frac{p q}{n} \\
\mathrm{SD}(\hat{p}) & =\frac{\mathrm{SD}\left(X_{1}\right)}{\sqrt{n}}=\frac{\mathrm{SD}\left(X_{j}\right)}{\sqrt{n}}=\frac{\sigma}{\sqrt{n}}=\sqrt{\frac{p q}{n}}
\end{aligned}
$$

Geometric random variable T ("time" of the first success in an iid sequence of Bernoulli trials):

$$
P(T=k)=q^{k-1} p ; \quad E(T)=\mu=\frac{1}{p} ; \quad \mathrm{SD}(T)=\sigma=\sqrt{\frac{q}{p^{2}}}
$$

Binomial random variable Y (\# of successes in n iid Bernoulli trials):

$$
P(Y=k)=\binom{n}{k}={ }_{n} C_{k}=\frac{n!}{k!(n-k)!} ; \quad E(Y)=\mu=n p ; \quad \mathrm{SD}(Y)=\sigma=\sqrt{n p q}
$$

Uniform random variable U on the interval $a \leqq x \leqq b$: If $a \leqq c \leqq d \leqq b$ then

$$
P(c \leqq U \leqq d)=\frac{(d-c)}{(b-a)} ; \quad E(U)=\mu=\frac{(a+b)}{2} ; \quad \mathrm{SD}(U)=\sigma=\sqrt{\frac{(b-a)^{2}}{12}}
$$

