Statistics Review

for the De Veaux/Velleman/Bock Series

Data

Categorical data are information about characteristics or qualities falling into different classifications.

Quantitative data are information about a quantity or measurement (with units).

The W's describe the data's context—*Who, What, Why, When,* Where, and hoW.

Displaying Categorical Data

A **bar chart** displays the distribution of a categorical variable, showing the count or percentage of values in each category.

A **pie chart** displays the distribution of a categorical variable by slicing a circle into pieces whose areas are proportional to the fraction of values in each category.

A **contingency table** displays the distribution of observations categorized on two variables.

Describing Categorical Data

A distribution shows counts or percentages of observations in each category.

A conditional distribution shows the distribution of one variable within a single category of another variable.

Independence exists when the distribution of one variable is the same in all categories of another variable; if the distribution depends on the category, we say there's an **association**.

Displaying Quantitative Data

A **histogram** displays the distribution of a quantitative variable in bars showing counts or percentages of observations falling in each interval.

A stem-and-leaf display records the actual data values falling in each interval by splitting the data into a stem (the tens digit, say) and a leaf (the units digit).

A dotplot displays dots (instead of bars or digits) for data values in each interval.

A **boxplot** displays a box spanning the middle 50% of the data (extending from the first to third guartile and showing the median), with whiskers extending to the lowest and highest nonoutlier data values, and outliers plotted.

Describing Quantitative Data

Always mention **shape** (modes symmetry), **center**, **spread**, and unusual features (gaps, clusters, and outliers).

www.pearsonhighered.com

Copyright © 2014 Pearson Education, Inc.

ALWAYS LEARNING

Quantitative Data Statistics

Minimum is the smallest data value.

Maximum is the largest data value.

Range: *range* = *maximum* - *minimum*

The median is the middle value (half the data are larger, half smaller).

The quartiles divide each half of the data in half; 25% of the data are smaller than Q_1 (the first quartile) and 25% larger than O_3 .

Interquartile range: $IQR = Q_3 - Q_1$

Outlier guideline: Data values that lie more than 1.5 IORs below O_1 or above O_3 may be outliers.

5-number summary: *min*, *Q*₁, *median*, *Q*₃, *max*

Aean:
$$\overline{y} = \frac{\sum y}{n}$$

tandard deviation: $s = \sqrt{\frac{\sum (y - \overline{y})^2}{n - 1}}$

A **scatterplot** displays points corresponding to cases measured on two variables

The **direction** is *positive* if higher values of one variable are generally associated with higher values of the other and *negative* if higher values of one variable are generally associated with lower values of the other. Form: *linear* or *curved*

Strength: The less scatter, the stronger the association.

Unusual features: Look for clusters, outliers, and influential points.

Correlation: *r* is a number between -1 and +1 describing the direction and strength of a linear relationship between two quantitative variables.

 $r = \frac{\sum z_x z_y}{n - 1}$

Straight Enough Condition: If the pattern in the scatterplot looks reasonably straight, it's okay to fit a linear model.

The **regression line** is a model that predicts a value of *y* for each x; $\hat{y} = b_0 + b_1 x$, where $b_1 = \frac{b_y}{s}$ and $b_0 = \overline{y} - b_1 \overline{x}$; the line passes through $(\overline{x}, \overline{y})$.

Two Quantitative Variables (continued)

Residual: $e = y - \hat{y}$, the difference between the actual value of y and the value predicted by the model.

Least squares: The regression line minimizes the sum of the squared residuals.

Slope: The slope models the relationship as *y*-units per *x*-unit.

Intercept: The *y*-intercept is the starting value (the value of \hat{y} predicted when x = 0).

*R***-squared:** R^2 is the fraction of the variability in y explained by the regression model.

Modeling Wisdom

Residual plots appear as randomly scattered points when the model is appropriate.

Influential points distort the model; if you are suspicious, try creating regression models both with and without them.

Cause and effect: A strong association is *not* evidence of causation.

Subsets: If a scatterplot shows distinct groups, it may be better to fit a model to each one separately.

Curvature: If the relationship is curved, re-express one or both variables to straighten the relationship. Possible approaches

include the **Ladder of Powers** (re-express *y* as y^2 , \sqrt{y} , log *y*,

 $\frac{1}{\sqrt{y}}, \frac{1}{y}$, etc.) or use log y and log x.

Simulations

Steps in a simulation: To investigate the distribution of outcomes for a situation of interest, create a simulation model based on random numbers.

- . Model a component: Explain how you will interpret random numbers to represent the most basic event of interest.
- **Simulate a trial:** Explain how you will use random numbers to model one outcome.
- . Define your response variable.
- **Run many trials**, recording the outcome for each.
- Analyze the response variable by graphing the data and calculating summary statistics.
- State a conclusion in the context of the original question.

Sampling

A **sample** is a subset of a **population** for which data are collected and analyzed in an effort to learn about unknown (unknowable) properties of the population. We use **sample statistics** to estimate population parameters.

Property	Statistic	Parameter						
Proportion	p	р						
Mean	$\frac{1}{\overline{Y}}$	μ						
Standard deviation	S	σ						
Slope	b_1	eta_1						
		more≻						

Sampling (continued)

- **Response bias** influences people's answers.

- In a **simple random sample**, each subset of size *n* is equally likely to be selected. • A stratified sample draws random samples from each of
- several homogeneous subpopulations (strata).
- A **cluster sample** randomly selects entire heterogeneous subpopulations (clusters) from among many. • A systematic sample selects (for example) every 12th

A **retrospective** study collects information looking into the past; a **prospective** study follows subjects over time.

subject.

The **response variable** is the (usually guantitative) outcome we measure to compare effects of the treatments.

- Principles of Design:
- sources of variability (subjects needn't be a random sample).
- Control known sources of variability whenever possible. Randomize subjects to treatments to balance unknown
- **Replicate** each treatment on many subjects.

PEARSON

Sampling error is sample-to-sample variation in a statistic.

- **Bias** is found in sampling methods that systematically misrepresent characteristics of the population.
- Undercoverage limits (or omits) some subpopulation. • Voluntary response allows individuals to self-select their
- participation. • Nonresponse bias occurs when many of those
- sampled elect not to participate.
- **Random sampling** gives each member of the population the same chance of being selected.
- individual from a list of the population starting from a randomly determined case.

Observational Studies

Observational studies can spot associations between variables but can neither reach conclusions about populations nor establish cause and effect. A **lurking variable** that influences both *x* and *y* can make it appear that *x* causes *y*.

Experiments

- An experiment applies treatments to randomly assigned subjects to observe the response.
- A **factor** is a variable manipulated by the experimenter, applied at several different levels.
- A **treatment** is the combination of factor levels applied to a
- A **control group** receives no treatment (or a null treatment) to provide a baseline for purposes of comparison.
- **Block** subjects with respect to preexisting sources of variability we can't control.
- **Blinding** is keeping people involved with the experiment unaware of treatment assignments, both (1) during the experiment (subjects and others in contact with them, often accomplished with **placebos**) and (2) during evaluation of the response. An experiment is **double blind** when both classes are kept unaware.
- A **confounding variable** is a variable that influences the response variable in ways that we can't separate from the effects of the experimental factor.

Probability

Probability is the long-run frequency of an event's occurrence; $0 \leq P(A) \leq 1$

A sample space is the set of all possible outcomes; P(S) = 1. **Complement Rule:** $P(A^{C}) = 1 - P(A)$

Addition Rule: $P(\mathbf{A} \text{ OR } \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B}) - P(\mathbf{A} \text{ AND } \mathbf{B})$

Multiplication Rule: $P(\mathbf{A} \mathbf{AND} \mathbf{B}) = P(\mathbf{A}) \times P(\mathbf{B} | \mathbf{A})$

Conditional probability:
$$P(\mathbf{B} | \mathbf{A}) = \frac{P(\mathbf{A} | \mathbf{A} \mathbf{N} \mathbf{D} | \mathbf{B})}{P(\mathbf{A})}$$

Disjoint (mutually exclusive) events cannot both happen:

 $P(\mathbf{A} \mathbf{A} \mathbf{N} \mathbf{D} \mathbf{B}) = 0$

Independent events: The occurrence of one event has no impact on the probability of the other: $P(\mathbf{A} | \mathbf{B}) = P(\mathbf{A})$ For random variables:

$$\mu = E(X) = \sum (x \times P(x))$$

$$\sigma^{2} = Var(X) = \sum ((x - \mu)^{2}P(x))$$

$$E(X + c) = E(X) + c$$

$$Var(X + c) = Var(X)$$

$$E(aX) = aE(X)$$

$$Var (aX) = a^{2}Var(X)$$

$$E(X \pm Y) = E(X) \pm E(Y)$$

Pythagorean Theorem of Statistics:

Var(

If random variables X and Y are independent, then

$$X \pm Y$$
 = $Var(X) + Var(Y)$

$$SD(X \pm Y) = \sqrt{SD^2(X) + SD^2(Y)}.$$

Normal model:

A Normal model, $N(\mu, \sigma)$, is unimodal, symmetric, and bell-shaped and is specified by its mean, μ , and standard deviation, σ .

68% of values lie within $\mu \pm 1\sigma$;

95% of values lie within $\mu \pm 2\sigma$;

99.7% lie within $\mu \pm 3\sigma$.

Bernoulli trials:

- two outcomes (success, failure)
- known probability of success p
- trials are independent

Geometric model:

X = number of Bernoulli trials until the first success

$$P(x) = q^{x-1}p$$
$$E(X) = \frac{1}{p}$$

Binomial model:

X = number of successes in *n* Bernoulli trials

$$P(x) = \binom{n}{x} p^{x} q^{n-x}$$
$$E(X) = np \quad SD(X) = \sqrt{npq}$$

Normal approximation: If we expect at least 10 successes and 10 failures, then binomial probabilities may be approximated using the Normal model
$$N(pq, \sqrt{npq})$$
.

Sampling Distribution Models

For a sample proportion: Provided that the sampled values are independent and the sample size is large enough, the sampling distribution of \hat{p} can be modeled by a Normal model with

$$\mu(\hat{p}) = p \text{ and } SD(\hat{p}) = \sqrt{\frac{pq}{n}}$$

For a sample mean: The Central Limit Theorem If a random sample of size *n* is drawn from a population with mean μ and standard deviation σ , then as *n* increases the sampling distribution of the sample mean, \overline{y} , approaches the Normal model $N(\mu, \frac{\sigma}{\sqrt{n}})$ regardless of the shape of the population.

Confidence Intervals

If the appropriate assumptions and conditions are met, we can have a specified level of confidence that the interval

estimate \pm (critical value) \times SE(estimate)

captures the value of a population parameter.

Hypothesis Tests

The four steps:

Hypotheses: Write a null hypothesis for the value of the population parameter and specify the alternative hypothesis (upper tail, lower tail, or two-tailed).

Model: Check assumptions and conditions, then specify the type of test and the sampling model.

Mechanics: Calculate the test statistic and find the P-value.

Conclusion: Link the P-value to your decision (reject or fail to reject H_0 and state your conclusion in the proper context.

The **null hypothesis** (H_0) specifies a parameter and a hypothesized value for that parameter.

The **alternative hypothesis** (H_A) is a statement indicating what values of the parameter are of interest (different from, smaller than, or larger than that specified in H_0).

The **P-value** is the probability that results at least as extreme as those we observed could have occurred if the null hypothesis were true.

Type I error is rejecting the null hypothesis when it is true.

Type II error is failing to reject the null hypothesis when it is false.

Power is the probability the test rejects a false null hypothesis. **Effect size** is the difference between the hypothesized value of the parameter and its true value.

The De Veaux/Velleman/Bock Series Statistics Review

Assumptions for Inference

PROPORTIONS (z)

- One sample
- 1. Individuals are independent.
- 2. Sample is sufficiently large.
- Two groups
- 1. Groups are independent.
- 2. Data in each group are independent.
- 3. Both groups are sufficiently large.

MEANS (t)

۲

- **One Sample** (df = n 1)
- 1. Individuals are independent.
- 2. Population has a Normal model.
- Matched pairs (df = n 1)
- 1. Data are matched.
- 2. Individuals are independent.
- 3. Population of differences is Normal.
- **Two independent samples** (df from technology)
- 1. Groups are independent.
- 2. Data in each group are independent.
- 3. Both populations are Normal.

DISTRIBUTIONS/ASSOCIATION (χ^2)

• Goodness-of-fit (df = # of cells - 1; one variable, one	sample compared with population model)
1. Data are counts.	1. (Are they?)
2. Data in sample are independent.	2. SRS and $n < 10\%$ of the population.
3. Sample is sufficiently large.	3. All expected counts \geq 5.
• Homogeneity $[df = (r - 1)(c - 1);$ many groups con	mpared on one variable]
1. Data are counts.	1. (Are they?)
2. Data in groups are independent.	2. SRSs and $n < 10\%$ OR random allocation.
3. Groups are sufficiently large.	3. All expected counts \geq 5.
• Independence $[df = (r - 1)(c - 1);$ sample from on	e population classified on two variables]
1. Data are counts.	1. (Are they?)
2. Data are independent.	2. SRSs and $n < 10\%$ of the population.
3. Sample is sufficiently large.	3. All expected counts \geq 5.
REGRESSION $(t, df = n - 2)$	
• Association of each quantitative variable ($\beta = 0$?)	
1. Form of relationship is linear.	1. Scatterplot looks approximately linear.
2. Errors are independent.	2. No apparent pattern in residuals plot.

4. Errors have a Normal model.

1. SRS and n < 10% of the population. 2. Successes and failures each \geq 10.

And the Conditions That

Support or Override Them

- 1. (Think about how the data were collected.)
- 2. Both are SRSs and n < 10% of populations OR random allocation.
- 3. Successes and failures each \geq 10 for both groups.
- 1. SRS and n < 10% of the population.
- 2. Histogram is unimodal and symmetric.*
- 1. (Think about the design.)
- 2. SRS and n < 10% OR random allocation.
- 3. Histogram of differences is unimodal and symmetric.*
- 1. (Think about the design.)
- 2. SRSs and n < 10% OR random allocation.
- 3. Both histograms are unimodal and symmetric.*

- 2. Errors are independent. 3. Variability of errors is constant. 3. Residuals plot has consistent spread. 4. Histogram of residuals is approximately unimodal and

4 Copyright © 2014 Pearson Education, Inc.

(*less critical as *n* increases)

straight.*

symmetric, or Normal probability plot reasonably

			Quick Guide to In	nference					
	Think				Show	1			
Inference about?	One group or two?	Procedure	Model	Parameter	Estimate	SE			
	One sample	1-Proportion z-Interval 1-Proportion z-Test	z	p ĝ		$\frac{\sqrt{\frac{\hat{p}\hat{q}}{n}}}{\sqrt{\frac{p_0q_0}{n}}}$			
PROPORTIONS	Two independent groups	2-Proportion z-Interval	z	$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}$			
	groups	2-Proportion z-Test				$\sqrt{\frac{\hat{p}\hat{q}}{n_1} + \frac{\hat{p}\hat{q}}{n_2}}, \ \hat{p} = \frac{y_1 + y_2}{n_1 + n_2}$			
	One sample	t-Interval t-Test	df = n - 1	μ	y	$\frac{3}{\sqrt{n}}$			
MEANS	Two independent groups	2-Sample <i>t</i> -Test 2-Sample <i>t</i> -Interval	t df from technology	$\mu_1 - \mu_2$	$\overline{y}_1 - \overline{y}_2$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$			
MEANS DISTRIBUTIONS (one categorical variable) INDEPENDENCE (two	Matched pairs	Paired <i>t</i> -Test Paired <i>t</i> -Interval	df = n - 1	μ_d	d	$\frac{s_d}{\sqrt{n}}$			
DISTRIBUTIONS	One sample	Goodness- of-Fit	$\frac{\chi^2}{df = cells - 1}$						
(one categorical variable)	Many independent groups	Homogeneity χ^2 Test	x ²	$\Sigma \frac{(Obs - Exp)^2}{Exp}$					
INDEPENDENCE (two categorical variables)	One sample	Independence χ^2 Test	df = (r - 1)(c - 1)						
ASSOCIATION (two quantitative variables)		Linear Regression t-Test or Confidence Interval for β		β ₁	<i>b</i> 1	$\frac{s_e}{s_x\sqrt{n-1}}$ (compute with technology)			
	One sample	*Confidence Interval for μ_{ν}	df = n - 2	$\mu^{ u}$	ŷν	$\sqrt{SE^2(b_1) \times \left(x_v - \overline{x}\right)^2 + \frac{s_e^2}{n}}$			
		*Prediction Interval for y_{ν}		y _v	ŷ _v	$\sqrt{SE^2(b_1) \times \left(x_v - \overline{x}\right)^2 + \frac{s_e^2}{n} + s_e^2}$			
Inference about?	One group or two?	Procedure	Model	Parameter	Estimate	SE Cł	hapt		

 (\bullet)

Second decimal place in z											Two tail probability One tail probability	,	0.20	0.10	0.05	0.02	0.01		
Table Z	0.09	0.08	0.07 0.0001	0.06	0.05	0.04	0.03	0.02	0.01	0.00	z -3.8	Table T	df 1	3.078	6.314 1	12.706	31.821	63.657	d
Areas under the standard normal curve	0.000	0.0001	0.0001	0.000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	-3.7	Values of t_{α}	2	1.886	2.920	4.303	6.965	9.925	
\frown	0.0002	2 0.0002	2 0.0002	2 0.0002	2 0.0002	0.0002	2 0.0002	2 0.0002	2 0.0002	0.0002	-3.5	\square	4	1.533	2.132	2.776	3.747	4.604	
	0.0002	2 0.0003 3 0.0004	3 0.0003 1 0.0004	B 0.0003	3 0.0003 1 0.0004	0.0003	3 0.0003 1 0.0004	3 0.0003 1 0.0005	3 0.0003 5 0.0005	0.0003	-3.4 -3.3	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	$\frac{\frac{\alpha}{2}}{2}$ 5	1.476 1.440	2.015 1.943	2.571 2.447	3.365 3.143	4.032 3.707	
	0.0003	5 0.0005 7 0.0007	5 0.0005 7 0.0008	5 0.0006 8 0.0008	5 0.0006 3 0.0005	0.0006	5 0.0006 3 0.0009	5 0.0006	5 0.0007	0.0007	-3.2	$-t_{\alpha/2} = 0$ $t_{\alpha/2}$ Two tails	7 8	1.415 1.397	1.895 1.860	2.365 2.306	2.998 2.896	3.499 3.355	
2 0	0.0010	0.0007	0.0000	0.0011	0.0001	0.0012	2 0.0012	2 0.0013	3 0.0013	0.0013	-3.0	\frown	9 10	1.383	1.833	2.262	2.821	3.250	
	0.0014	4 0.0014 9 0.0020	<pre>4 0.0015 0 0.0021</pre>	5 0.0015 0.0021	5 0.0016 0.0022	0.0016	5 0.0017 3 0.0023	7 0.0018 3 0.0024	3 0.0018 1 0.0025	0.0019	-2.9 -2.8		10	1.372	1.812	2.228	2.764	3.109	
	0.0026	5 0.0027 5 0.0037	7 0.0028 7 0.0038	8 0.0029 8 0.0039	0.0030	0.0031	0.0032	2 0.0033	0.0034 0.0045	0.0035	-2.7		= 12 13	1.356	1.782	2.179	2.681 2.650	3.055 3.012	
	0.0048	3 0.0049	9 0.0051	0.0052	2 0.0054	0.0055	5 0.0057	7 0.0059	0.0060	0.0062	-2.5	One tail	14 15	1.345 1.341	1.761 1.753	2.145 2.131	2.624 2.602	2.977 2.947	
	0.0064	1 0.0066 1 0.0087	0.0068 7 0.0089	0.0069	0.0071	0.0073	5 0.0075 5 0.0099	0.0078 0.0102	0.0080 0.0104	0.0082	-2.4 -2.3		16 17	1.337	1.746 1.740	2.120 2.110	2.583 2.567	2.921 2.898	
	0.0110	0.0113 0.014 ϵ	8 0.0116 5 0.0150	0.0119 0.0154	0.0122 0.0158	0.0125	5 0.0129 2 0.0166	9 0.0132 5 0.0170	2 0.0136 0 0.0174	0.0139	-2.2 -2.1		18 19	1.330	1.734	2.101	2.552	2.878	
	0.0183	3 0.0188	8 0.0192	0.0197	0.0202	0.0207	0.0212	2 0.0217	0.0222	0.0228	-2.0		20	1.325	1.725	2.093	2.528	2.845	
	0.0233	4 0.0239	0.0244	0.0250	0.0256	0.0262	0.0268	5 0.0274 5 0.0344	0.0281 0.0351	0.0287	-1.9 -1.8		21 22	1.323 1.321	1.721 1.717	2.080 2.074	2.518 2.508	2.831 2.819	
	0.0362	7 0.0375 5 0.0465	5 0.0384 5 0.0475	0.0392 0.0485	2 0.0401 5 0.0495	0.0409	0.0418 0.0516	3 0.0427 5 0.0526	7 0.0436 5 0.0537	0.0446	-1.7 -1.6		23 24	1.319 1.318	1.714 1.711	2.069 2.064	2.500 2.492	2.807 2.797	
	0.0559	9 0.0571	0.0582	2 0.0594	0.0606	0.0618	8 0.0630	0.0643	0.0655 0.0702	0.0668	-1.5		25	1.316	1.708	2.060	2.485	2.787	
	0.0823	0.0694 3 0.0838	i 0.0708 3 0.0853	0.0721 0.0869	0.0735	0.0749	0.0764	i 0.0778 3 0.0934	0.0793 0.0951	0.0808	-1.4 -1.3		26	1.315	1.708	2.056	2.479 2.473	2.779	
	0.0985	5 0.1003 0 0.1190	0.1020 0.1210	0.1038 0.1230	0.1056 0.1251	0.1075	5 0.1093 0.1292	3 0.1112 2 0.1314	0.1131 0.1335	0.1151	-1.2 -1.1		28 29	1.313	1.701	2.048 2.045	2.467 2.462	2.763 2.756	
	0.1379	0.1401	0.1423	0.1446	5 0.1469	0.1492	0.1515	5 0.1539 0.1789	0.1562	0.1587	-1.0		30 32	1.310 1.309	1.697 1.694	2.042 2.037	2.457 2.449	2.750 2.738	
	0.1862	7 0.1894	0.1000	0.1949	0.1711	0.2005	5 0.1702 5 0.2033	0.1780 0.2061	0.1014	0.1341	-0.8		35	1.306	1.690	2.030	2.438	2.725	
	0.2148	0.2177 0.2483	0.2206	0.2236	0.2266 0.2578	0.2296	0.2327	0.2358 0.2676	6 0.2389 5 0.2709	0.2420	-0.7 -0.6		45	1.301	1.679	2.014	2.412	2.690	
	0.2776	5 0.2810	0.2843	0.2872	7 0.2912 3 0.3264	0.2946	5 0.2981	0.3015	5 0.3050 0 3409	0.3085	-0.5		50 60	1.299 1.296	1.676 1.671	2.009 2.000	2.403 2.390	2.678 2.660	
	0.3483	0.3520	0.3557	0.3594	0.3632	0.3669	0.3707	0.3745	5 0.3783	0.3821	-0.3		75 100	1.293 1.290	1.665 1.660	1.992 1.984	2.377 2.364	2.643 2.626	1
	0.3859	0.3897 0.4286	0.3936	0.3974 0.4364	0.4013	0.4052	2 0.4090 3 0.4483	0.4129	0.4168 2 0.4562	0.4207	-0.2 -0.1		120	1.289	1.658	1.980	2.358	2.617	
	0.4642 For z	$1 0.4681 \le -3.90$	0.4721 . the area	0.4761 as are 0.0	0.4801	0.4840	0.4880 mal plac) 0.492(es.	0.4960	0.5000	-0.0		180	1.286	1.653	1.973	2.347	2.603	
			,	Sec	ond de	cimal r	lace in	z					400 1000	1.285	1.649	1.969	2.341	2.596	4
Table Z (cont.)	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09			1.282	1.645	1.962	2.330	2.576	10
standard normal curve	$0.0 \\ 0.1$	0.5000 0.5398	0.5040 0.5438	0.5080 0.5478	0.5120 0.5517	0.5160 0.5557	0.5199 0.5596	0.5239 0.5636	0.5279 0.5675	0.5319 (0.5359 0.5753	Confidence	levels	80%	90%	95%	98%	99%	
\frown	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141 0.6517	Right tail probability		0.10	0.05	0.025	0.01	0.005	;
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	Table χ	df 1	2 706	3 8/1	5.024	6.63	5 7 870	,
0 <i>z</i>	0.5 0.6	0.6915 0.7257	0.6950 0.7291	0.6985 0.7324	0.7019 0.7357	0.7054 0.7389	0.7088 0.7422	0.7123 0.7454	0.7157 0.7486	0.7190 (0.7224 0.7549	Values of χ^2_{α}	2	4.605	5.991	7.378	9.21) 10.597	7
	0.7 0.8	0.7580 0.7881	0.7611 0.7910	0.7642 0.7939	0.7673 0.7967	0.7704 0.7995	0.7734 0.8023	0.7764 0.8051	0.7794 0.8078	0.7823 (0.7852 0.8133		4	7.779	9.488	11.143	13.27	7 14.860)
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389		5 6	9.236 10.645	11.070 12.592	12.833 14.449	15.080 16.812	5 16.750 2 18.548) 3
	1.0 1.1	0.8413 0.8643	0.8438	0.8461	0.8485 0.8708	0.8508 0.8729	0.8531 0.8749	0.8554 0.8770	0.8577 0.8790	0.8599	0.8621 0.8830	$0 \qquad \chi^2_{\alpha}$	7	12.017 13.362	14.067 15.507	16.013 17.535	18.47 20.09	5 20.278) 21.955	5
	1.2 1.3	0.8849 0.9032	0.8869 0.9049	0.8888 0.9066	0.8907 0.9082	0.8925 0.9099	0.8944 0.9115	0.8962 0.9131	0.8980 0.9147	0.8997 (0.9162 (0.9015 0.9177		9 10	14.684	16.919	19.023	21.66	5 23.589)
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319		10	17.275	19.675	20.483	23.20	5 26.757	, ,
	1.5 1.6	0.9332	0.9345	0.9357	0.9370	0.9382 0.9495	0.9394	0.9406	0.9418	0.9429 0	0.9441 0.9545		12 13	18.549 19.812	21.026 22.362	23.337 24.736	26.21	7 28.300 3 29.819))
	1.7 1.8	0.9554 0.9641	0.9564 0.9649	0.9573 0.9656	0.9582 0.9664	0.9591 0.9671	0.9599 0.9678	0.9608 0.9686	0.9616 0.9693	0.9625 (0.9633 0.9706		14 15	21.064	23.685 24.996	26.119 27.488	29.14 30.578	1 31.319 3 32.801) 1
	1.9 2.0	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767		16 17	23.542	26.296 27 587	28.845 30 191	32.00) 34.267	7
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857		18	25.989	28.869	31.526	34.80	5 37.156	;
	2.2 2.3	0.9861 0.9893	0.9864 0.9896	0.9868 0.9898	0.9871 0.9901	0.9875 0.9904	0.9878 0.9906	0.9881 0.9909	0.9884 0.9911	0.9887 (0.9890 0.9916		20	27.204 28.412	31.410	34.170	37.56	5 39.997	7
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934 (0.9936 0.9952		21 22	29.615 30.813	32.671 33.924	35.479 36.781	38.932 40.290	2 41.401) 42.796	5
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964		23 24	32.007	35.172 36.415	38.076	41.63	3 44.181) 45 559)
	2.7 2.8	0.9965 0.9974	0.9966 0.9975	0.9967 0.9976	0.9968 0.9977	0.9969 0.9977	0.9970 0.9978	0.9971 0.9979	0.9972 0.9979	0.9973 ().9974).9981		25	34.382	37.653	40.647	44.31	46.928	3
	2.9 3.0	0.9981 0.9987	0.9982	0.9982	0.9983	0.9984 0.9988	0.9984	0.9985	0.9985	0.9986	0.9986 0.9990		26 27	35.563 36.741	38.885 40.113	41.923 43.195	45.64 46.96	48.290 3 49.645	;
	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993		28 29	37.916 39.087	41.337 42.557	44.461 45.722	48.278 59.588	3 50.994 3 52.336	£ 5
	3.2 3.3	0.9993	0.9993	0.9994 0.9995	0.9994 0.9996	0.9994 0.9996	0.9994	0.9994	0.9995	0.9995).9995).9997		30 40	40.256	43.773	46.979 59 342	50.892	2 53.672	2
	3.4 3.5	0.9997 0.9998	0.9997	0.9997	0.9997	0.9997 0.9998	0.9997	0.9997	0.9997	0.9997).9998) 9998		50	63.167	67.505	71.420	76.15	4 79.490)
	3.6	0.9998	0.9998	0.99999	0.9999	0.9999	0.99999	0.99999	0.9999	0.99999).9999		60 70	74.397 85.527	79.082 90.531	83.298 95.023	88.38 100.42	1 91.955 1 104.213	3
	3.7 3.8	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.9999	0.99999).9999).99999		80 90	96.578 107.565	101.879 113.145	106.628 118.135	112.328	3 116.320 5 128.296)
	For z	\geq 3.90, 1	the areas	are 1.00	000 to for	ır decim	al place	s.					100	118.499	124.343	129 563	135.81	140 177	7

5 Copyright © 2014 Pearson Education, Inc.

20/03/15 2:21 PM

۲