Statistics Review

for the De Veaux/Velleman/Bock Series

Two Quantitative Variables (continued) Residual: $e=y-\hat{y}$, the dififernce between the actual value
of y and the value predicted by the model. Least squares. The
squared residuals.

R.squared: R^{2} is the fraction of the variability in y explained by the reggession model.

Modeling Wisdom

 Residual plots appear as randomly scattered points when themodel is appropprate.

 Subsesss If If scatemplot shows disisict groups, it may be beter to
fit model toech one separatelys
Curvature: If hite relationship is curved, re-express one or both Currature: If the erationship is curved, re.express one or boit
variables os ostraighen the erelationship. Possible approaches include the Ladder of Powers (re-express y as $y^{2}, ~ \sqrt{y}, \log y$,
$-1,-\frac{1}{y}$
etcc $\frac{1}{\sqrt{y}} \frac{-1}{y}$, etc.) or use logy and $\log x$.

Simulations

2. Sitmate
to model
3. Reine
4. Run
5. Analye
A.

Sampling

A sample is a s subset of poppulation for uhich data are collected
and analyzed in an efforto toear about unknown (unknowable)

roperies of the popuation. We use sample statistics to estimal
population parameers.

| Property |
| :--- | :--- |
| Proportion |

Proportion
Mean
Sen
Mean
Standard deviatio

Observational Studies

 A retrospective study collects information looking intopast a p pospective study follows subjects over time.

Experiments

Sampling Distribution Models
For a sample proportion: Provided that the sampled values are For a sample proportion: Provided that the sampled values are
indenenden and the sample size is arge enough, the samplin
distribution of \hat{p} can be modeled by a Normal model with $\mu(\hat{\rho})=p$ and $S D(\hat{\rho})=\sqrt{\frac{p q}{n}}$ For a sample mean: The Central Linit Theorem If a random
sample of size n is drawn from a population with mean μ and

Confidence Intervals

It the appropiate assumptions and conditions are met, we
have a specified level of ofonidence that the interal
estimale \pm (critical value) \times SE (estimanate)
Hypothesis Tests
The four steps:
Hypotheses: Write a null hypothesis for the value of the popu-

 Mechanics: Calculate the teststataisicic and find the P-value
Conclusion L Link the P-value to yur decision reiect or fail
 The null hypothesis $\left(H H_{0}\right)$ speciifes aparameter and a hypoth
esized value fort that parameete.

The De Veaux/Velleman/Bock Series Statistics Review

Assumptions for Inference	And the Conditions That Support or Override Them
PROPORTIONS (z) One sampl	
1. Individuals are independent.	1. SRS and $\mathrm{n}<10 \%$ of the population.
2. Sample is sufficiently large.	2. Successes and failure each ≥ 10.
- Two groups	
1. Groups are independent.	1. (Think about how the data were collected.).
2. Data in each group are independent.	2. Both are SRSs and $n<10 \%$ of populations OR random allocation
3. Both groups are sufficiently large.	3. Suceeses and failures each ≥ 10 for both groups.
MEANS (t)	
- One Sample (df = $n-1$)	
1. Individuals are independent.	1. SRS and $n<10 \%$ of the population.
2. Population has a Normal model.	2. Historram is unimodal and symmetric.*
Matched pairs (dif $=n-1$)	
1. Data are matched.	1. (Think about the design.)
2. Individuals are independent.	2. SRS and $n<10 \%$ OR random allocation.
3. Population of difierences is Normal.	3. Histogram of dififerences is unimodal and symmertic.*
- 'wo independent samples ddf from technology	
1. Groups are independent.	1. (Think about the design.)
2. Data in each group are independent. 3. Both populations are Normal.	2. SRSs and $n<10 \% \mathrm{OR}$ random allocation. ${ }^{\text {3. }}$ Both histogram are unimodal and symmeric.**
Distributionsiassociation (x^{2})	
- Goodness-of.fit (df = \# of cells -1 ; one variable, one sample compared with population mod	
1. Data are counts.	1. Are they?)
2. Data in sample are independent.	2. SRS and $n<10 \%$ of the population.
3. Sample is sufficiently large.	3. All expected counts ≥ 5.
- Homogeneity [df $=(r-1)(\mathrm{c}-1)$; many groups compared on one variable]	
1. Data are counts.	
2. Data in groups are independent.	2. SRS sand $\mathrm{<}<10 \%$ OR random allocation.
3. Groups are sufficiently large. All expected counts ≥ 5.- Independence $[\mathrm{df}=(r-1)(c-1)$; sample from one population classified on two variables]	
2. Data are independent.	2. SRSS and $n<10 \%$ of the population.
3. Sample is sufficiently large.	3. All expected counts ≥ 5.
REGRESSION ($(\mathrm{df}$ dif $=$ - 2)	
- Association of each quantitative variable ($\beta=0$?)	
	1. Scaterplot looks approximately linear.
2. Errors are independent.	2. No apparent pattern in residuals plot.
	3. Residuals plot has consistent spread.
4. Errors have a Normal model.	4. Histogram of residuals is approximately unimodal and symmetric, or Normal probability plot reasonably straight.*
	(*less critical as n increases)

Quick Guide to Inference							
			Show				
Inference about?	$\begin{gathered} \text { one } \\ \text { ono } \\ \text { on } \end{gathered}$	Procedure	Model	Parameter	Estimate	SE	
PROPortions	(one	$\begin{gathered} \text { 1-Proportion } \\ \text { z-Interval } \end{gathered}$	z	p	\hat{p}	$\sqrt{\frac{\hat{\rho} \hat{q}}{n}}$	
						$\sqrt{\sqrt{p_{0} q_{0}}}$	
	$\begin{gathered} \text { inven } \\ \text { indenentent } \\ \text { groups } \end{gathered}$	2-Proportion	z	$p_{1}-p_{2}$	$\hat{p}_{1}-\hat{p}_{2}$	$\sqrt{\frac{\hat{p}_{1} \hat{l}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{q_{1}}}{n_{2}}}$	
						$\sqrt{\frac{\hat{p} q}{n_{1}}+\frac{\hat{p} \hat{q}}{n_{2}^{\prime}} \hat{p}=\frac{y_{1}+y_{2}}{n_{1}+n_{2}}}$	
means	$\begin{gathered} \text { One } \\ \text { samp } \end{gathered}$	$\begin{gathered} t \text {-Interval } \\ t \text {-Test } \end{gathered}$	$d \stackrel{t}{d i}$	${ }^{\mu}$	$\overline{\text { y }}$	$\frac{5}{\sqrt{n}}$	
	$\begin{gathered} \text { Tiven } \\ \text { indepentert } \\ \text { groups } \end{gathered}$	2-Sample t-Test 2-Sample t-Interval	$\underset{\substack{\text { deftrom } \\ \text { technology }}}{ }$	$\mu_{1}-\mu_{2}$	$\bar{r}-\overline{r_{2}}$	$\sqrt{\frac{p_{1}}{p_{1}}+\frac{s_{1}}{m_{2}}}$	
	$\begin{gathered} \text { Matched } \\ \text { pairs } \end{gathered}$	Paired t-Test Paired t-Interval	$d f={ }_{n-1}^{t}$	${ }_{\mu}$	д	$\frac{s_{d}}{\sqrt{n}}$	
$\begin{aligned} & \text { DISTRIBUTIONS } \\ & \text { (one categorical } \\ & \text { variable) } \end{aligned}$	$\begin{gathered} \text { One } \\ \text { sampl } \end{gathered}$	$\begin{gathered} \text { Goodness- } \\ \text { of-Fit } \end{gathered}$	$\begin{gathered} \chi^{2} \\ d f=\text { cell }-1 \end{gathered}$	$\Sigma \frac{(\text { Obs - Exp })^{2}}{\text { Exp }}$			
	$\text { indereny } \begin{gathered} \text { Mdentent } \\ \text { gropps } \end{gathered}$	$\begin{gathered} \text { Homogeneity } \\ \chi^{2} \text { Test } \end{gathered}$	$\int_{\mathrm{df}}=(x-1)(\mathrm{x}-1)$				
INDEPENDENCE (two variables)	One sample	Independence χ^{2} Test					
Assoclation		$\begin{gathered} \text { Linear Regression } \\ t \text {-Test or Confidence } \\ \text { Interval for } \beta \end{gathered}$		β_{1}	b_{1}		
$\begin{aligned} & \text { (two } \\ & \text { quantitative } \\ & \text { variables) } \end{aligned}$	$\begin{gathered} \text { One } \\ \text { sample } \end{gathered}$	*Conifidence	dif ${ }_{n}^{t}-2$	μ^{*}	8	$\sqrt{s E^{2}\left(b_{1}\right) \times\left(x_{2}-\bar{x}\right)^{2}+\frac{s s_{\text {e }}}{n}}$	
		*Prediction Interval for y_{v}		\%	8	$\sqrt{\operatorname{se}^{2}\left(b_{1}\right) \times\left(x_{0}-\bar{x}\right)^{2}+\frac{s_{e}^{2}}{n}+s_{c}^{2}}$	
Inference	$\begin{gathered} \text { one } \\ \text { one } \\ \text { on } \end{gathered}$	Procedure	Model	Para	nate	SE	Chapter

4 Copright $\odot 2014$ Pearson Eduation, Inc.
Coprrighe 2014 Pearson Eduaction, Inc.

