Math 330 Section 3 Homework 02

Written assignments:
First submission: Wednesday, September 9
Last submission: Thursday, September 24

Correction to both written assignments:

Sept 9, 2015, 8:40 PM: In both cases, I wrote "... up to but NOT including prop.2.4 ...". I meant to say "... up to but AND including prop.2.4 ...". Fair warning: I do not believe that prop.2.4 will be of any help.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
Textbook: all of ch. 1
Other course material:
Nothing so far

New reading assignments:

Reading assignment 1 - due: Tuesday, September 8 Read carefully ch.2.1 and ch.2.2. in the book.
Be prepared to take a quiz which asks for everything asked for in previous assignments PLUS axiom 2.1, the definitions of \mathbb{N}, of natural numbers, positive integers, negative integers, the definitions of Law of the Excluded Middle, $a<b, a \leq b, a>b, a \geq b$, less than, less than or equal to, greater than, greater than or equal to, the definitions of equality of sets, $A \subseteq B, A \supseteq B$.

Core propositions you should be able to cite:
Prop.2.2 (Trichotomy), Prop.2.3 $(1 \in \mathbb{N})$, Prop. $2.13(\mathbb{N}=\{n \in \mathbb{Z}: n>0\})$
Reading assignment 2 - due: Wednesday, September 9 Read carefully ch.2.3 on induction in the book. Read everything starting with thm. 2.17 up to and including the "template for proofs by induction" extra carefully and repeatedly! I shall nickle-and-dime you on correctly writing down proofs that use induction repeatedly and it is a $\mathbf{1 0 0 \%}$ certainty that such proofs will appear on on some of the exams and the final!

Be prepared to take a quiz which asks for everything asked for previously PLUS
axiom 2.15, all theorems (thm.2.17 and 2.25) and their names,
all definitions: digits, base case, inductions step
and all core propositions: $2.14,2.16,2.20-2.22$
Some advice: Don't skip the margins on to of p. 20 (the "ladder principle") because it is a good way of deepening your intuitive grasp of how proofs by induction work.

Reading assignment 3 - due: Friday, September 11 Read carefully all of ch. 2 in the book (the additional chapter 2.4 has less than 2 pages).

Be prepared to take a quiz which asks for everything asked for previously PLUS
the one theorem (thm.2.32) and its name and props 2.33, 2.34.
The book only contains one definition: that of a smallest element or minimum of a set.
Here are three more which you also must be prepared to answer:
Definition Let $A \subset \mathbb{Z}$ and let $m_{0} \in \mathbb{Z}$.
a. If m_{0} satisfies $m_{0} \leq a$ for all $a \in A$ then we call m_{0} a lower bound of A
b. If m_{0} satisfies $m_{0} \geq a$ for all $a \in A$ then we call m_{0} an upper bound of A
c. If both m_{0} is an upper bound of A and also $m_{0} \in A$ then we call m_{0} the maximum of A and we write $m_{0}=\max (A)$.

You should understand that $\min (\mathrm{A})$, as defined in the text, can be described as follows:
d. $\min (A)$, if it exists, is a lower bound of A which also is an element of A.

Written assignment 1:

Use everything up to, AND including prop.2.4, to prove that if $k \in \mathbb{Z}$ then $k+1>k$. Hint: Use prop.2.3.

Written assignment 2:

Use assignment 1 above and everything up to AND including prop.2.4, to prove prop.2.5: For each $n \in \mathbb{N}$ there exists $M \in \mathbb{N}$ such that $M>n$.

GOOD NEWS: When you do assignments from chapter 2 and later chapters you need no longer justify the rules of arithmetic given to you in ch.1. You may even use the "general laws of associativity": Given any finite sum of integers such as $\left(m_{1}+m_{2}\right)+\left(n_{1}+n_{2}\right)$ you may regroup the parentheses and even drop them. The same is true for products.

