Math 330 Section 3 Homework 14

Due date: Friday, November 6, 2015

Running total: 45 points

Last submission Friday, November 20, 2015

```
Special note - What's on exam 2:
    a. MF write-up ch.4: will have a simple proof on the exam.
    b. MF write-up ch.5: no proofs, but defs and true/false questions
    c. MF write-up ch.7 until before ch.7.1.2: Disproportionately high importance:
        c1. def. metric space
        c2. examples of distance functions, incl. d(f,g):=|f-g|\infty}=\operatorname{sup}{|f(x)-g(x)|:x\in\operatorname{domain}(f)
        c3. Thm 7.1: norms define metrics
        c4. Prop 7.1: |f||\infty}\mathrm{ defines a norm (hence a metric by thm.7.1)
    d. B/G ch.8-11 with focus on ch.9.1, ch.10, ch.11.
```


Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
Textbook:
all of ch.1-11 (ch.7.2 was optional),
Other course material (course materials page):
"Logic part 1", "Sets part 1", "Sets part 2", "Functions part 1", "Functions part 2"
"Lecture Notes: Math 330 - Additional Material":
All of ch. 3 (understand the material)
all of ch. 4 (understand the proofs!)
all of ch. 5 (learn all definitions and the two theorems at the end, skip the proofs
All of ch. 6 (understand the material) EXCEPT ch. 6.2.2 on normed vector spaces
Chapter 7 until end of subchapter 7.1.1: "Measuring the distance of real functions"

New reading assignment - Due Fri, Nov.6:

B/G ch. 12

Assignment 1:

Prove B/G Prop.11.6, p.108: Let $m, n, s, t \in \mathbb{Z}$. Let $n, t \neq 0$. Then $\frac{m}{n}+\frac{s}{t}=\frac{m t+n s}{n t}$.

Assignment 2:

Prove B/G Thm.11.12, p.110: If $r \in \mathbb{N}$ is not a perfect square, then \sqrt{r} is irrational.
Hint: Study the proof of prop. 11.10 carefully and you'll see that you can use it with small alterations.

Assignment 3:

Use everything up-to and including prop.11.10 PLUS all of prop. 11.20 and prop. 11.21 to prove the following: Let $m, n \in \mathbb{Z} \backslash\{0\}$. Then $(m / n) \sqrt{2}$ is irrational.

